Publications

Detailed Information

Part I : Reoptimized Phase-transfer Catalytic Alkylation of α-acetylthiomalonate Part II : Application and Confirm the Absolute Configuration of α-benzoxy-α-alkylmalonate : Part I : α–acetylthiomalonate의 상전이 촉매 Alkylation의 최적화 연구 Part II : α-benzoxy-α-alkylmalonate의 응용 및 절대배열 확인

DC Field Value Language
dc.contributor.advisor박형근-
dc.contributor.author이준영-
dc.date.accessioned2017-07-19T11:27:06Z-
dc.date.available2017-07-19T11:27:06Z-
dc.date.issued2017-02-
dc.identifier.other000000142085-
dc.identifier.urihttps://hdl.handle.net/10371/133673-
dc.description학위논문 (석사)-- 서울대학교 대학원 : 약학대학 약학과(약품제조화학전공), 2017. 2. 박형근.-
dc.description.abstractPart I :
유기황화합물은 자연과 생물학적 시스템에 널리 존재하는 물질로 천연물 및 의약품에서 그 구조를 쉽게 발견할 수 있다. 유기황화합물의 생물학적 중요성 때문에 비대칭의 탄소-황 결합을 만들기 위한 시도가 있어왔다. 그 중 가장 널리 쓰이는 방법은 황-마이클 첨가반응으로 직접적으로 설페닐레이션 하는 방법이다. 그러나 설페닐레이션은 기질준비의 어려움과 작용기의 변형이 어렵다는 단점이 있었다.
지난 2011년, 본 연구실에서는 알파,알파-다이알킬말로네이트에 광학활성이 있는 사차암모늄 염을 촉매로 하여 상전이촉매반응을 통해 높은 화학적 수율과 입체선택성을 갖는 알킬레이션의 새로운 합성법을 보고한 바 있다. 또한 이 합성법을 이용하여 천연물의 전합성과 유용한 유도체를 합성함으로써 유용성을 입증하였다. 이 기질의 영역을 확장하고자 알파-
아세틸싸이오말로네이트에 상전이 촉매 알킬화 반응으로 황 원소를 포함하는 비대칭 4차 탄소 골격의 합성법을 시도하였다.
그 결과 터트-부틸 다이페닐메틸 알파-아세틸싸이오말로네이트에 상전이 촉매인 (S,S)-3,4,5-트라이플로로페닐-NAS 브로마이드와 염기수용액인 50% 포타슘하이드록사이드와 유기용매인 톨루엔을 사용하여 -20oC의 온도에서 입체선택적 알킬레이션 하여 알파-아세틸싸이오-알파-알킬말로네이트를 최대 99 %의 높은 화학적 수율과 98 %ee의 높은 광학적 수율로 합성하였다.

Part II :
지난 2013년, 본 연구실은 상전이 촉매 반응을 통하여 알파-벤족시-알파-알킬말로네이트를 입체선택적으로 합성하여, 최대 99 %의 높은 화학적 수율과 93 %ee의 높은 광학적 수율을 얻은 바 있다. 그러나 본 합성법을 이용한 응용에 관한 연구는 진행이 된 바 없었으며, 입체선택적으로 합성한 알파-벤
족시-알파-알킬말로네이트의 엑스레이크리스탈로그래피를 측정하여 절대배열을 알아보려 하였으나 실패하였다.
이에 본 합성법의 응용으로 다단계 반응에 걸쳐서 베타-하이드록시다이이스터, 알파,베타-다이하이드록시 이스터와 알파,베타-에폭시이스터 그리고 1,2-다이올과 같은 의약합성에 유용한 유도체를 얻을 수 있었다. 또한 1,2-다이올은 알려져 있는 화합물로서 우리가 합성한 물질의 선광도를 비교하여 알파-벤족시-알파-알킬말로네이트가 R의 절대배열을 가졌음을 확인할 수 있었다.
-
dc.description.abstractPart I :
Organosulfur compounds are widely present in bioactive natural products and pharmaceuticals. The C-S bond formation is basic approach to synthesize the organosulfur compound. Among the C-S bond formation, construction of sulfur-bearing chiral quaternary carbon center is the most challenging target. There have been many synthetic methods for construction of sulfur-bearing chiral quaternary carbon center, but most of them were reactions through the sulfa nucleophile attack. However, these conventional methods have limitations in preparing sulfa nucleophiles and modifying its substrates.
In 2011, our research team reported novel synthetic method for chiral α,α-dialkylmalonates in high chemical yield and optical yield by asymmetric phase-transfer
catalyzed alkylation of modified malonates in the presence of chiral quaternary ammonium salts, and successfully proved its value by application of the natural product total synthesis and bioactive chemical block synthesis. To expand the research scope, we designed new substrate bearing heteroatoms to malonates α–position especially sulfur. Into this new sulfur bearing substrate, we tried to insert the various electrophiles via asymmetric phase-transfer catalytic alkylation. As a result, enantioselective alkylation of tert-butyl diphenylmethyl α-acetylthiomalonate was accomplished through asymmetric phase-transfer catalysis in the presence of (S,S)-3,4,5-trifluorophenyl-NAS bromide as chiral catalyst and 50% KOH (aq) as base solution, toluene as organic solvent at -20 oC reaction temperature to afford the corresponding α-acetylthio-α-alkylmalonates in high chemical (up to 99%) and optical yields (up to 98%ee).

Part II :
In 2013, our research team developed enantioselective synthetic method for α-benzoyloxy-α-alkylmalonates via PTC alkylation. The asymmetric PTC α-alkylation of α-
benzoxymalonate produced the corresponding α-benzoxy-α-alkylmalonates with high chemical (up to 99 %) and optical (up to 93 %ee) yields. However, we didnt try the derivatization of α-benzoxy-α-alkylmalonates and we couldnt get the absolute configuration by X-ray crystallography. Accordingly, we have been proceeded the derivatization of α-benzoxy-α-alkylmalonates.
We could synthesize the chiral β-hydroxydiester, α,β-dihydroxyester, α,β-epoxyester, and 1,2-diol via multiple steps of reaction. From this applications we could confirm the absolute configuration of chiral α-benzoxy-α-alkylmalonate. The absolute configuration of α-benzoxy-α-alkylmalonate was assigned as R by the chemical conversion to a known compound 1,2-diol.
-
dc.description.tableofcontentsPart I. Reoptimized Phase-transfer Catalytic Alkylation of α- acetylthiomalonate 1
ABSTRACT 2
INTRODUCTION 3
1. Synthesis of organosulfur compounds 3
1.1. Organosulfur compounds 3
1.2. Previous approaches to synthesize the sulfur-bearing chiral quaternary carbon center 5
1.3. Reverse strategy to synthesize the sulfur-bearing chiral quaternary carbon center 7
2. Phase-transfer Catalysis 8
2.1. Asymmetric phase-transfer catalysis 8
2.2. Mechanism of phase-transfer catalysis 9
2.3. Chiral Phase-transfer Catalysts 10
2.4. Design of Substrates for Phase-transfer Catalytic Alkylation 14
RESULTS AND DISCUSSION 16
1. Synthesis of α-acetylthiomalonate substrate 16
2. Reoptimization of phase-transfer catalytic alkylation 18
2.1. Reoptimization of phase-transfer catalyst 18
2.2. Reoptimization of base and temperature for asymmetric phase-transfer catalytic alkylation 18
3. Asymmetric phase-transfer catalytic alkylation of α-acetylthiomalonates with various electrophile 21
4. Absolute configuration of α-acetylthio- α-alkylmalonate 24
CONCLUSION 25
EXPERIMENTAL SECTION 26
1. General Methods 26
1.1. Solvents and reagents 26
1.2. Chromatography and HPLC 26
1.3. Spectral data 26
2. α-Acetylthio-α-alkylmalonates 27
2.1 Preparation of α-acetylthiomalonate substrate 27
2.2 General procedure for Phase-transfer catalytic alkylation 30
REFERENCES 42
국문초록 43

Part II : Application and Confirm the Absolute Configuration of chiral α-benzoxy-α-alkylmalonate 44
ABSTRACT 45
INTRODUCTION 46
1. The organic compounds with chiral tertiary alcohols 46
2. Asymmetric phase-transfer catalyzed alkylation of α-benzoxymalonate 47
RESULT AND DISCUSSION 49
1. Derivatization of α-benzoxy-α-alkylmalonate 49
2. Confirm the absolute configuration of α-benzoxy-α-alkylmalonate 52
CONCLUSION 54
EXPERIMENTAL SECTION 55
1. General Methods 55
1.1. Solvents and reagents 55
1.2. Chromatography and HPLC 55
1.3. Spectral data 55
2. Derivatization of α-benzoxy-α-alkylmalonate 56
2.1. Preparation of α-benzoxy-α-alkylmalonate 56
2.2. Synthesis of α-benzoxy-α-alkylmalonate derivatives 59
REFERENCES 53
국문초록 64
-
dc.formatapplication/pdf-
dc.format.extent2275668 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subjectenantioselective synthesis-
dc.subjectasymmetric phase-transfer catalysis-
dc.subjectα-acetylthio-α-alkylmalonate-
dc.subjectquaternary carbon center-
dc.subjectα-benzoxy-α-alkylmalonate-
dc.subjectderivatization-
dc.subject.ddc615-
dc.titlePart I : Reoptimized Phase-transfer Catalytic Alkylation of α-acetylthiomalonate Part II : Application and Confirm the Absolute Configuration of α-benzoxy-α-alkylmalonate-
dc.title.alternativePart I : α–acetylthiomalonate의 상전이 촉매 Alkylation의 최적화 연구 Part II : α-benzoxy-α-alkylmalonate의 응용 및 절대배열 확인-
dc.typeThesis-
dc.contributor.AlternativeAuthorLee Jun Young-
dc.description.degreeMaster-
dc.citation.pages70-
dc.contributor.affiliation약학대학 약학과-
dc.date.awarded2017-02-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share