Publications

Detailed Information

A Diatom-Based Reconstruction of the Paleoenvironmental Changes during the Last Deglaciation in Jeju Island, Korea : 규조분석을 통한 마지막 해빙기 동안의 제주도 하논 마르형 호수 고환경 복원

DC Field Value Language
dc.contributor.advisor박정재-
dc.contributor.author한지우-
dc.date.accessioned2017-07-19T12:03:23Z-
dc.date.available2017-07-19T12:03:23Z-
dc.date.issued2015-08-
dc.identifier.other000000066822-
dc.identifier.urihttps://hdl.handle.net/10371/134065-
dc.description학위논문 (석사)-- 서울대학교 대학원 : 지리학과, 2015. 8. 박정재.-
dc.description.abstract지구 온난화 문제로 미래기후변화 예측은 중요한 문제가 되었다. 미래기후변화를 예측함에 있어 고기후 및 고환경의 복원은 핵심적인 것이라고 할 수 있는데, 기후는 일정한 주기로 반복적인 경향을 보이기 때문이다. 특히, 마지막 해빙기는 미래기후변화 예측에 중요한 시기인데, 이 시기의 기후 변화는 매우 다양한 모습을 보이며, 이러한 변화는 가까운 미래의 기후변화와 유사할 가능성이 있기 때문이다.
제주도 하논은 동아시아 계절풍과 쿠로시오 해류의 영향을 동시에 받는 지역이기 때문에 동아시아 고기후 및 고환경 복원에 있어 중요한 곳이다. 하논 지역에 대한 기존 연구들은 주로 지형분석 및 화분분석을 통해 육상환경을 복원해왔다. 그러나 이 지역이 원래 호수지역이었다는 점을 고려하여 본 연구에서는 호소환경을 포함하여 보다 자세한 고환경 및 고기후 복원에 유용한 규조분석을 사용하였다.
규조는 호수의 염도, 수심, 산성화, 영양상태, 수온 등과 같은 다양한 환경 정보를 제공하는 환경변화 지시종으로, 규조분석은 퇴적물 속에 남아있는 규조 미화석을 분석하여 조사하는 방법론이다. 그 중에서도, 본 연구에서는 규조분석을 통해 얻어진 정보를 바탕으로 마지막 해빙기 동안의 하논 고호수의 수심, 영양상태, 부수성, 수온, 산성화 정도를 자세히 복원하였다.
10m코어 중, 마지막 해빙기에 해당하는 시기인(약 15,500 ? 8,000cal. yr BP) 90cm에서 250cm의 구간을 연구했다. 현미경 분석으로 규조를 동정하여 규조 다이어그램을 그렸으며, constrained incremental sum of squares cluster analysis를 통해 구분된 규조 구간(zone)으로 마지막 해빙기 동안의 하논 기후사건 시기를 정했다. 그 결과 Oldest Drays는 15,440 ? 14,670 cal. yr BP, Bølling-Allerød 초반부는 14,670 ? 14,180 cal. yr BP로 나타났다. 이어서 Bølling-Allerød는 14,180 cal. yr BP ? 12,810 cal. yr BP, Younger Dryas는 12,810 ? 12,150 cal. yr BP, Preboreal은 12,150 ? 10,440 cal. yr BP, and Boreal은 10,440 ? 7,980 cal. yr BP로 확인되었다. 이러한 기후 시기 구분은 하논의 고기후를 연구한 선행연구와 일치하는 것으로 나타났다.
이어서 규조 군집변화와 호소학적 과정(limnological process)를 고려하여 규조 다이어그램 결과를 도식화함으로써 하논 고호수의 영양 상태, 수심, 부수성, 수온, 산성화 정도를 복원하였다. 복원된 호소환경을 구간별로 살펴봄으로써 상대적인 환경변화를 복원하였고, 이를 주성분분석과 P:B 비율을 통해 검토하였다. 복원결과 마지막 해빙기 동안의 하논 고환경 변화는 다음과 같았다. Oldest Drays에는 춥고 건조했다가 Bølling-Allerød가 시작되면서 점점 따뜻해지고 습윤해졌다. 이후 Younger Dryas때는 습윤했다 건조해지는 추운 날씨가 계속되었고, Preboreal때에는 점점 따뜻해지고 일시적으로 건조해졌으며, Boreal에 들어서 따뜻해지고 건조 또는 습윤해졌다.
규조분석을 통해 한국 담수지역의 고기후 및 고환경을 처음으로 복원했다는 의미를 갖는다. 또한, 전체적인 기후 경향뿐 아니라 하논 고호수의 영양 상태, 수심, 부수성, 수온, 산성화 정도 등도 밝혀냈다. 마지막으로, 본 연구의 결과는 한반도 마지막 해빙기 동안의 고환경 및 고기후 복원에 유용한 새로운 방법론과 자료를 제시하였다는 의의를 갖는다.
-
dc.description.abstractReconstructing the paleoclimate/paleoenvironment has become more important as the prediction of future climate change becomes a more pressing issue. Future climate change can be predicted by reconstructing the paleoclimate of the past, as it reoccurs in a repeated cyclical fashion. In particular, the last deglaciation is the focus of much research these days because it consists of various climate shifts which may be similar to the future climate change triggered by global warming.
Hanon maar paleolake, in the southern part of Jeju Island, is located in a geographically significant place that can provide the missing link to the paleoenvironment between Japan and China because the southern part of Jeju Island is influenced by the East Asia monsoon and the Kuroshio Current. However, only the morphology and terrestrial environment of Hanon maar has been researched so far, so it is necessary to investigate Hanon maar paleoenvironment using another type of proxy data to observe it from a different angle. Because Hanon maar had been a paleolake until 500 years ago, diatom analysis is an appropriate methodology to reconstruct the paleoenvironment around Hanon paleolake
-
dc.description.abstractit provides information on lacustrine environmental changes.
The aquatic environment during the last deglaciation of Hanon maar paleolake in Jeju Island, Korea, has been reconstructed through diatom analysis. Diatom analysis is a methodology investigating diatom microfossils in sediments, which are phytoplankton with silicic valves. Diatoms are a good indicator of environmental changes
-
dc.description.abstractthey provide various environmental information such as salinity, water depth, acidification, trophic status, water temperature, and so on. Among them, water depth, trophic status, saprobity, water temperature and the acidification of Hanon paleolake during the last deglaciation has been reconstructed in detail based on the information derived from diatom analysis.
The sediment core(HN-1) had been extracted and analyzed using diatom analysis. This study covers from 90 to 250cm in the 10 meter long core, which includes the last deglaciation(ca. 15,500 ? 8,000 cal. yr BP). After identifying diatoms by microscope analysis, diatom diagrams were constructed. The zones in the diagram were determined based on constrained incremental sum of squares cluster analysis, and climate events during the last deglaciation in Hanon paleolake have been zoned: Oldest Dryas for 15,440 ? 14,670 cal. yr BP, the beginning of Bølling-Allerød for 14,670 ? 14,180 cal. yr BP, ongoing Bølling-Allerød for 14,180 cal. yr BP ? 12,810 cal. yr BP, Younger Dryas for 12,810 ? 12,150 cal. yr BP, Preboreal for 12,150 ? 10,440 cal. yr BP, and Boreal for 10,440 ? 7,980 cal. yr BP. The time table of the climate shifts in Hanon maar which is reconstructed in this study corresponds with other studies of Hanon maar paleoclimate.
The result of the diatom diagram was schematized to reconstruct the water depth, trophic status, saprobity, water temperature and acidification of the paleolake based on changes in the diatom assemblage and limnological processes. The reconstructed aquatic environment has also been drawn in the graph which outlined relative phase-dependent environment changes in the Hanon paleolake. Afterwards, the reconstructed environment based on the diatom diagram has been verified by the results of PCA and P:B ratio. The components of Axis 1, 2 and 3 and the value of P:B ratio were made into several graphs, and they were compared to each other. Based on the meaning of each value such as trophic status, water depth and pH, the verification made the previously reconstructed lacustrine environment revised. Overall, Hanon maar paleoenvironment during the last deglaciation has changed as follows: cold and dry for the Oldest Dryas, increasing temperatures and moisture for the Bølling-Allerød, cold and wet-dry for the Younger Dryas, an increase in temperatures and temporarily drier for the Preboreal, and warm and dry/wet for the Boreal.
This was the first time a paleoenvironment of Korean freshwater zone was constructed using diatom analysis
-
dc.description.abstracttherefore, this study itself is meaningful. Furthermore, this study reconstructed trophic status, water depth, saprobity, water temperature and acidification of Hanon paleolake by diatom analysis. In conclusion, it was possible to reconstruct the paleo-lacustrine environment of Hanon maar paleolake during the last deglaciation using diatom analysis, and it provided a new proxy data for the paleoenvironment/paleoclimate during the last deglaciation on the Korean Peninsula.-
dc.description.tableofcontentsTable of Contents

Abstract i
Table of Contents iv
List of Figures vii
List of Tables ix

Chapter 1. Introduction 1
1.1. Study Backgrounds 1
1.2. Regional and Temporal Settings: Hanon Paleo-Maar Lake in Jeju Island 3
1.3. Research Purpose and Structure 7

Chapter 2. Literature Review 10
2.1. Studies on Hanon Paleo-Maar Lake 10
2.2. Introduction to Diatoms 14
2.3. Studies on Diatom Analysis for Reconstruction of Paleoenvironment in Korea and Abroad 15

Chapter 3. Methodology 18
3.1. Preparation of Diatom Slides 18
3.2. Microscope Examination 20
3.3. Diatom Diagram and Diatom Concentration 21
3.4. Principal Component Analysis 25
3.5. The Ratio of Planktonic to Benthic Diatom Species 26

Chapter 4. Research Results and Analysis 28
4.1. Principal Component Analysis 28
4.2. Diatom Flora in the Diagram 40
4.1.1. Zone 1: 15,440 cal. yr BP ? 14,670 cal. yr BP (Oldest Dryas) 43
4.1.2. Zone 2-a: 14,670 cal. yr BP ? 14,180 cal. yr BP (The beginning of Bølling-Allerød) 43
4.1.3. Zone 2-b: 14,180 cal. yr BP ? 12,810 cal. yr BP (Bølling-Allerød) 44
4.1.4. Zone 3: 12,810 cal. yr BP ? 12,150 cal. yr BP (Younger Dryas) 44
4.1.5. Zone 4: 12,150 cal. yr BP ? 10,440 cal. yr BP (Pre-Boreal: the beginning of Holocene) 45
4.1.6. Zone 5: 10,440 cal. yr BP ? 7,980 cal. yr BP (Boreal) 45
4.3. The Ratio of Planktonic to Benthic Diatom Species 46

Chapter 5. Discussion 51
5.1. Reconstructing the Paleoenvironment of Hanon Maar based on the Diatom Diagram and Schematization 52
5.1.1. Reconstructing the Paleoenvironment of Hanon Maar through schematization of each zone based on Diatom Diagram 52
5.1.2. Summary of the Paleoenvironment of Hanon Maar based on the Schematization 63
5.2. Verification of the Reconstructed Paleoenvironment of Hanon Maar Based on Axis 1, 2, 3, and the Values of P:B Ratio 65
5.3. Comparison and Analysis between Diatom Analysis and Other Multi-Proxy Data from Another Research on the Paleoenvironment of Hanon Maar 74


Chapter 6. Conclusions 81

Bibliography 84

APPENDIX 94
Appendix I. A diagram including all diatom species 94
Appendix II. A count sheet of 17 major diatom species 96
Appendix III. The component scores of Axis 1, 2, 3 and 4 by depth 105
Appendix IV. The component scores of major species at Axis 1, 2, 3 and 4 from PCA 108
Appendix V. Images of diatom species in Hanon maar paleolake 109

국 문 초 록 112


?
List of Figures

Figure 1. Map of Hanon maar and coring site(yellow arrow) 4
Figure 2. Climate data of Seogwipo City, Jeju Island (1981-2010) 5
Figure 3. Research flow chart 9
Figure 4. The time table of climate events in Hanon maar paleolake (Chung, 2007
-
dc.description.tableofcontentsPark et al., 2014a-
dc.description.tableofcontentsPark et al., 2014b) 12
Figure 5. The morphology of a diatom 14
Figure 6. PCA graphs with major diatom taxa (A) excluding spp. and (B) including spp. 28
Figure 7. Principal component analysis of the HN-1 diatom data 32
Figure 8. Diagram for examination of Axis 1, 2 and 3 34
Figure 9. The graphs of component scores on the PCA Axis 1, 2, 3 36
Figure 10. The graph of component scores on the PCA Axis 1 37
Figure 11. The graph of component scores on the PCA Axis 2 38
Figure 12. The graph of component scores on the PCA Axis 3 39
Figure 13. Diatom diagram including spp. 42
Figure 14. The respective changes of planktonic and benthic species 49
Figure 15. P:B ratio 50
Figure 16. Diatom diagram excluding spp. 54
Figure 17. Schematization of diatom assemblage changes ? zone 1 57
Figure 18. Schematization of diatom assemblage changes ? zone 2-a 57
Figure 19. Schematization of diatom assemblage changes ? zone 2-b 59
Figure 20. Schematization of diatom assemblage changes ? zone 3 59
Figure 21. Schematization of diatom assemblage changes ? zone 4 61
Figure 22. Schematization of diatom assemblage changes ? zone 5 62
Figure 23. Schematization of relative phase-dependent reconstruction of aquatic environmental changes 64
Figure 24. P:B ratio and the component scores of Axis 2 67
Figure 25. The component scores of Axis 1 and 2 70
Figure 26. The component scores of Axis 1 and 3 71
Figure 27. The component scores of Axis 2 and 3 72
Figure 28. The revised version of the paleoenvironment in Hanon 73
Figure 29. Climate shifts in Hanon maar by adding the one reconstructed by diatom proxy data of this study 75
Figure 30. Diagram for comparisons between the changes of Botryococcus & Celtis and D. confervacea & PC 1, 2, 3 77


?
List of Tables

Table 1. Eigenvalues and variance explained by PCA of the diatom species from core HN-1 29
Table 2. Saprobity index ? the classes of water quality (Kelly et al., 2005) 55
Table 3. Habitat environments of major diatom species in Hanon 56
Table 4. Table of relative phase-dependent reconstruction of the aquatic environmental changes in Hanon maar paleolake 63
-
dc.formatapplication/pdf-
dc.format.extent6718224 bytes-
dc.format.mediumapplication/pdf-
dc.language.isoen-
dc.publisher서울대학교 대학원-
dc.subjectdiatom analysis-
dc.subjectthe last deglaciation-
dc.subjectJeju Island-
dc.subjectHanon maar paleolake-
dc.subjectreconstruction of paleoenvironment-
dc.subjectpaleoclimate-
dc.subject.ddc910-
dc.titleA Diatom-Based Reconstruction of the Paleoenvironmental Changes during the Last Deglaciation in Jeju Island, Korea-
dc.title.alternative규조분석을 통한 마지막 해빙기 동안의 제주도 하논 마르형 호수 고환경 복원-
dc.typeThesis-
dc.contributor.AlternativeAuthorJiwoo Han-
dc.description.degreeMaster-
dc.citation.pagesix, 113-
dc.contributor.affiliation사회과학대학 지리학과-
dc.date.awarded2015-08-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share