Publications

Detailed Information

A novel and efficient approach to specifying Dirichlet far-field boundary condition of pressure Poisson equation

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors

Lee, Jun-Hyeok; Lee, Seung-Jae; Suh, Jung Chun

Issue Date
2018-01
Publisher
Emerald Group Publishing Ltd.
Citation
International Journal of Numerical Methods for Heat and Fluid Flow, Vol.28 No.3, pp.726-744
Abstract
Purpose: As the penalized vortex-in-cell (pVIC) method is based on the vorticity-velocity form of the Navier–Stokes equation, the pressure variable is not incorporated in its solution procedure. This is one of the advantages of vorticity-based methods such as pVIC. However, dynamic pressure is an essential flow property in engineering problems. In pVIC, the pressure field can be explicitly evaluated by a pressure Poisson equation (PPE) from the velocity and vorticity solutions. How to specify far-field boundary conditions is then an important numerical issue. Therefore, this paper aims to robustly and accurately determine the boundary conditions for solving the PPE. Design/methodology/approach: This paper introduces a novel non-iterative method for specifying Dirichlet far-field boundary conditions to solve the PPE in a bounded domain. The pressure field is computed using the velocity and vorticity fields obtained from pVIC, and the solid boundary conditions for pressure are also imposed by a penalization term within the framework of pVIC. The basic idea of our approach is that the pressure at any position can be evaluated from its gradient field in a closed contour because the contour integration for conservative vector fields is path-independent. The proposed approach is validated and assessed by a comparative study. Findings: This non-iterative method is successfully implemented to the pressure calculation of the benchmark problems in both 2D and 3D. The method is much faster than all the other methods tested without compromising accuracy and enables one to obtain reasonable pressure field even for small computation domains that are used regardless of a source distribution (the right-hand side in the Poisson equation). Originality/value: The strategy introduced in this paper provides an effective means of specifying Dirichlet boundary conditions at the exterior domain boundaries for the pressure Poisson problems. It is very efficient and robust compared with the conventional methods. The proposed idea can also be adopted in other fields dealing with infinite-domain Poisson problems.
ISSN
0961-5539
Language
English
URI
https://hdl.handle.net/10371/138870
DOI
https://doi.org/10.1108/HFF-02-2017-0060
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share