Browse

Development and Applications of Hazardous Gas Dispersion Surrogate Model Using Machine Learning
기계 학습을 활용한 유해 가스 확산 대리 모델의 개발과 응용

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors
전경우
Advisor
이원보
Major
공과대학 화학생물공학부
Issue Date
2018-08
Publisher
서울대학교 대학원
Description
학위논문 (박사)-- 서울대학교 대학원 : 공과대학 화학생물공학부, 2018. 8. 이원보.
Abstract
The method of predicting hazardous gas dispersion using Computational Fluid Dynamics (CFD) is advantageous in that it can be utilized in various ways due to its high accuracy. However, it has structural complexity and requires a lot of computing resources, which hinders its utilization.

First, TOXIM, which is a toxic gas dispersion simulator that can be easily used by anyone, has been developed solving the structural complexity of computational fluid dynamics. The stability of the simulator is confirmed by carrying out case study under various conditions using TOXIM. In addition, TOXIM's methodology of simulating gas leak accident that occurred in Gumi prove similarity between actual and simulation results.

Next, a surrogate model is developed to reduce computation time of computational fluid dynamics and utilize it in real time. Compressed computational fluid dynamics calculation results are obtained by using various deep learning methods, and a surrogate model is created using neural network based functions. Among them, VAEDC-DNN shows the highest accuracy. It is confirmed that the computation time is reduced to several seconds in the surrogate model compared to several hours in the actual computational fluid dynamics. This demonstrates that computational fluid dynamics can be used in real time in a gas leak accident.

Finally, the CFD model is applied to the gas leak detector placement problem. A surrogate model is used to generate various gas leak accident scenarios and the position of the detector is optimized by applying the Mixed Integer Linear Programming using the generated samples. Optimization results showed better performance when using surrogate model.
Language
English
URI
http://hdl.handle.net/10371/143063
Files in This Item:
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Chemical and Biological Engineering (화학생물공학부)Theses (Ph.D. / Sc.D._화학생물공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse