Publications
Detailed Information
Comparative study of computational algorithms for the Lasso with high-dimensional, highly correlated data
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, Baekjin | - |
dc.contributor.author | Yu, Donghyeon | - |
dc.contributor.author | Won, Joong-Ho | - |
dc.creator | 원중호 | - |
dc.date.accessioned | 2019-04-24T08:30:49Z | - |
dc.date.available | 2020-04-05T08:30:49Z | - |
dc.date.created | 2018-09-14 | - |
dc.date.created | 2018-09-14 | - |
dc.date.created | 2018-09-14 | - |
dc.date.created | 2018-09-14 | - |
dc.date.issued | 2018-08 | - |
dc.identifier.citation | Applied Intelligence, Vol.48 No.8, pp.1933-1952 | - |
dc.identifier.issn | 0924-669X | - |
dc.identifier.uri | https://hdl.handle.net/10371/147950 | - |
dc.description.abstract | Variable selection is important in high-dimensional data analysis. The Lasso regression is useful since it possesses sparsity, soft-decision rule, and computational efficiency. However, since the Lasso penalized likelihood contains a nondifferentiable term, standard optimization tools cannot be applied. Many computation algorithms to optimize this Lasso penalized likelihood function in high-dimensional settings have been proposed. To name a few, coordinate descent (CD) algorithm, majorization-minimization using local quadratic approximation, fast iterative shrinkage thresholding algorithm (FISTA) and alternating direction method of multipliers (ADMM). In this paper, we undertake a comparative study that analyzes relative merits of these algorithms. We are especially concerned with numerical sensitivity to the correlation between the covariates. We conduct a simulation study considering factors that affect the condition number of covariance matrix of the covariates, as well as the level of penalization. We apply the algorithms to cancer biomarker discovery, and compare convergence speed and stability. | - |
dc.language | 영어 | - |
dc.language.iso | en | en |
dc.publisher | Kluwer Academic Publishers | - |
dc.title | Comparative study of computational algorithms for the Lasso with high-dimensional, highly correlated data | - |
dc.type | Article | - |
dc.identifier.doi | 10.1007/s10489-016-0850-7 | - |
dc.citation.journaltitle | Applied Intelligence | - |
dc.identifier.wosid | 000439158700003 | - |
dc.identifier.scopusid | 2-s2.0-84991833009 | - |
dc.description.srnd | OAIID:RECH_ACHV_DSTSH_NO:T201719354 | - |
dc.description.srnd | RECH_ACHV_FG:RR00200001 | - |
dc.description.srnd | ADJUST_YN: | - |
dc.description.srnd | EMP_ID:A079602 | - |
dc.description.srnd | CITE_RATE:1.904 | - |
dc.description.srnd | FILENAME:10.1007-s10489-016-0850-7.pdf | - |
dc.description.srnd | DEPT_NM:통계학과 | - |
dc.description.srnd | EMAIL:won.j@snu.ac.kr | - |
dc.description.srnd | SCOPUS_YN:Y | - |
dc.description.srnd | FILEURL:https://srnd.snu.ac.kr/eXrepEIR/fws/file/c3cdcc74-11a7-4316-8c57-a7b1737f830c/link | - |
dc.citation.endpage | 1952 | - |
dc.citation.number | 8 | - |
dc.citation.startpage | 1933 | - |
dc.citation.volume | 48 | - |
dc.description.isOpenAccess | N | - |
dc.contributor.affiliatedAuthor | Won, Joong-Ho | - |
dc.identifier.srnd | T201719354 | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.subject.keywordPlus | GENE-EXPRESSION | - |
dc.subject.keywordPlus | LUNG | - |
dc.subject.keywordPlus | REGRESSION | - |
dc.subject.keywordPlus | SHRINKAGE | - |
dc.subject.keywordPlus | SELECTION | - |
dc.subject.keywordPlus | LEVEL | - |
dc.subject.keywordAuthor | Lasso | - |
dc.subject.keywordAuthor | Majorization-minimization | - |
dc.subject.keywordAuthor | Coordinate descent | - |
dc.subject.keywordAuthor | ADMM | - |
dc.subject.keywordAuthor | FISTA | - |
- Appears in Collections:
- Files in This Item:
- There are no files associated with this item.
Item View & Download Count
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.