Publications

Detailed Information

Experimental Evaluation and On-Blade Trailing-Edge Flap Control Algorithm for Helicopter Vibration Reduction : 회전익기 능동 진동 제어를 위한 플랩 블레이드의 시험 평가 및 제어 알고리즘 연구

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors

임병욱

Advisor
신상준
Major
공과대학 기계항공공학부
Issue Date
2019-02
Publisher
서울대학교 대학원
Description
학위논문 (석사)-- 서울대학교 대학원 : 공과대학 기계항공공학부, 2019. 2. 신상준.
Abstract
본 논문에서는 서울대학교 능동 뒷전플랩 축소 블레이드 (SNUF 블레이드)에 대한 구조 안정성 및 동특성을 분석하였다. 이를 위해 시제 블레이드에 대한 인장 시험 및 뒷전 플랩 구동기 구성품에 대한 동특성 및 내구성 시험이 수행되었으며, 다물체 동역학 유한 요소 해석이 수행되었다. 무힌지형 SNUF 블레이드는 DYMORE 및 VABS를 사용하여 1차원 기하학적 정밀 보 요소와 2차원 단면 물성으로 구성되었다. 구조-공력 연계 해석은 DYMORE 내부의 Peters/He 3차원 유한 상태 동적 유입류 및 후류 이론이 사용되었다. 이러한 다물체 동역학 해석을 기반으로 동특성 해석을 위해 다중 블레이드 좌표 변환(multi-blade coordinate transform
MBC transform) 및 주파수 스윕(frequency sweep) 기법을 이용한 플랩 블레이드의 선형 주기 전달함수 식별이 수행되었다. 식별된 선형 주기 전달함수로부터 상태-공간 방정식이 유도되었고, 선형 2차 가우시안 (linear quadratic Gaussian
LQG) 기법을 이용한 최적 진동 하중 제어 알고리즘에 대한 설계가 수행되었다. 진동 하중 제어의 결과를 DYMORE 다물체 동역학 해석 결과와 비교하였다. 또한, MATLAB/Simulink를 통한 개루프 전달함수 분석에 의해 이득 및 위상 여유과 같은 제어기 설계 여유 값이 정밀하게 해석되었다. 마지막으로, 제작된 블레이드 시편에 대한 인장시험이 수행되어 블레이드 구조 내구성에 대한 평가를 완료하였다.
The periodic and nonlinear properties of helicopter rotors in forward flight induce undesirable vibratory loads on the rotor hub. Many recent studies have demonstrated that on-blade control (OBC) using active trailing-edge flaps (ATEFs) may reduce vibration level through comprehensive rotor simulations and wind-tunnel tests. In this thesis, structural integrity analysis on the Mach-scaled Seoul National University flap (SNUF) prototype blade and a high-fidelity identification process of its vibratory load transfer function along with control simulations using the multi blade coordinate transformation (MBC) are introduced.
Multi-body finite element structures of the hingeless SNUF blade are configured with one-dimensional beam elements and two-dimensional cross-sectional properties. Aerodynamic interfaces include the three-dimensional finite state dynamic inflow and wake theory. Structural integrity is evaluated with sectional redistribution of the stress and strain in the principal axes of the plies which are obtained for 6 different load cases. The load cases include the maximum trimmed blade internal loads at advance ratios of 0.15 and 0.33. The stress and strain margins are below 65% of allowable values under safety factor of 1.5. Results of the estimated fan plot and lead-lag mode damping variation with respect to the collective pitch reveals that the present SNUF blade has similarities to the full-scale hingeless blades.
A linear time-periodic (LTP) transfer function and corresponding reduced order linear time-invariant (LTI) state-space model is identified by frequency-sweep of the flap in a fixed-frame using Fourier coordinate transform. Based on the estimated transfer functions of the vibratory loads, vibratory load alleviating simulation is performed where the flap control input is provided by linear quadratic Gaussian (LQG) regulator. Control margins such as the gain and phase margin are to be precisely examined by the loop-break analysis.
Finally, fabrication, bench dynamic tests and tensile tests on SNUF blade is carried out. Dynamic characteristics of the flap actuation mechanism is identified under tensile load, as well as the tensile load test on the prototype flap blade revealed the validity of the structural design of the blade.
Language
eng
URI
https://hdl.handle.net/10371/150640
Files in This Item:
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share