Browse

워터젯 추진 상륙돌격장갑차의 실험 성능 추정법 개발
Development of Experimental Method for Powering Prediction of a Waterjet-Propelled Amphibious Armored Vehicle

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors
정회성
Advisor
이신형
Major
공과대학 조선해양공학과
Issue Date
2019-02
Publisher
서울대학교 대학원
Description
학위논문 (석사)-- 서울대학교 대학원 : 공과대학 조선해양공학과, 2019. 2. 이신형.
Abstract
상륙작전은 상륙전력이 해상을 통하여 적 해안에 기습 상륙하는 것을 말하며, 상륙의 성공여부가 전쟁의 양상에 큰 영향을 미친다. 이러한 상륙작전의 수행을 위하여 대한민국 해병대는 상륙돌격장갑차를 운용중에 있으며, 세계적으로 美 해병대 다음으로 많은 상륙돌격장갑차를 보유하고 있다. 하지만, 현재 수륙양용 장갑차의 운용기간이 20년 이상 경과되었으며, 현대전 개념인 초수평선 상륙작전을 수행하기 위한 해상에서의 항주성능 또한 부족한 실정이다. 따라서, 現 전력의 도태로 인한 새로운 전력의 확보와 초수평선 상륙작전의 수행을 위한 한국형 고속수륙양용체계의 확보가 불가피한 상황이다.
신속한 수상이동의 중요요소는 기동속도와 항주자세 안정성으로, 수상에서의 속도향상을 위해서는 장갑차의 BOX형 형상적 특징에 대한 저항 감소 설계와 이를 극복할 추진 성능이 요구된다. 따라서, 본 연구는 일반적인 고속상륙돌격장갑차의 구성요소인 워터젯 추진기, 전/후방 부가물 및 현수장치가 적용된 대상 차체에 대하여 실험성능 추정기법을 제안한다.
본 논문에서의 모형차체 형상은 주변국에서 개발한 차체형상과 선행연구결과를 기반으로 선정하였으며, 크기는 축척비 1/4.5로 제작하였다. 부가물은 전방에 굴절형 차수판과 후방에 트림탭을 설치하였으며, 현수장치 형상은 육상모드를 적용하여 모형시험을 수행하였다. 또한, 워터젯은 차체와 동일한 축척비에 맞춰 1/4.5로 제작하였다.
본 연구는 ITTC 선박추진성능 해석 절차를 기본으로, 저항시험, 워터젯 단독시험, 볼라드풀 시험, 자항시험, 자유항주시험 단계로 상륙돌격장갑차 모형시험을 수행하였다. 또한, ITTC 제시 절차를 일부 변형 및 추가하여 각 단계에서의 차체와 워터젯 성능요소를 산출 및 분석하였으며, 결과의 주된 성능 요인을 추정하여 축척의 영향을 판단하였다. 자유항주시험은 옥외시험장에서 실시하였으며, 이외의 시험단계는 서울대학교 예인수조에서 수행하였다.
모형시험 결과, 1) 워터젯 단계별 시험을 통해 워터젯 펌프, 덕트, 제트효율의 변화를 확인하였으며, 이러한 변화 요인을 분석하여 축척효과를 고려한 실차의 워터젯 성능을 추정하였다. 또한, 2) 워터젯 추진 상륙돌격장갑차 모형의 각 단계별 시험을 통해 종경사, 추력감소비를 산출하였고, 축척효과를 고려하여 실차에서의 항주특성을 추정하였다. 저항-자항간 자세변화는 볼라드 풀 시험을 통해 원인을 규명하였으며, 자유항주시험을 통해 자항시험의 신뢰도를 확보하였다. 마지막으로 3) ITTC 해석절차에 일부 절차와 데이터 획득을 추가함으로써, 워터젯 추진 상륙돌격장갑차의 실험성능 추정법을 제안하였다.
결론적으로, BOX형 형상의 워터젯 상륙돌격장갑차의 모형시험을 통해 성능 변화 데이터를 확보하였으며, 이에 적절한 실험 성능 추정법을 개발 및 제시하였다.
An amphibious operation refers to landing power on the enemy coast through the sea. The success of the landing has a great influence on the aspect of the war. In order to carry out such an amphibious operation, the ROK Marine Corps is operating an amphibious armored vehicle. The Korean Marines have many amphibious armored vehicles next to the US Marine Corps. However, the operation period of the amphibious armored vehicle has passed 20 years or more. There is also a lack of maritime performance in order to carry out the Over The Horizon Amphibious Operation, which is a modern war concept. Therefore, it is necessary to secure a Korean high-speed amphibious system for securing new vehicle due to the culling of the present power and performing the Over The Horizon Amphibious Operation.
The important factors of the rapid water movement are the speed and the stability of sailing. In order to improve the speed of the watercraft, it is required to design a resistance against the Box-shaped feature of the armored vehicle and to have a propulsion performance to overcome this. Therefore, this study proposes an experimental performance estimation method for waterjet propulsion, fore & after attachment and suspension system which are components of general high speed amphibious armored vehicle.
The shape of the model body in this study was selected based on the body shape developed in the neighboring countries and the results of previous studies. The shape of the model body in this study was selected based on the body shape developed in the neighboring countries and the results of the previous studies, and the size was made with a scale ratio of 1 / 4.5. The appendages were fitted with an inflectional plate at the fore and a trim tab at the after. The shape of the suspension was modeled by applying the land mode. In addition, the waterjet was made to 1 / 4.5 with the same scale ratio as the vehicle body.
In this study, amphibious armored vehicle model tests were carried out based on the ITTC ship propulsion performance analysis procedure, resistance test, waterjet system test, bollard pull test, self-propulsion test, and free running test. Also, some modifications and additions of the ITTC presentation procedure were performed to calculate and analyze the body and waterjet performance factors at each stage. The main performance factors of the results were estimated to determine the effect of scale. The free running test was conducted at the outdoor test site, and the other test steps were carried out at Seoul National University Towing Tank.
The results of the model test are as follows: 1) The water jet pump, ducting, and jet efficiency changes were confirmed by the water jet step test. By analyzing these factors, I estimated the waterjet performance in the actual vehicle considering the scale effect. In addition, 2) trim and thrust deduction factors were calculated through each stage test of the waterjet propulsion amphibious armored vehicle model. Then, the characteristics of sailing in real vehicle were estimated by considering the scale effect. The change of trim in resistance test and self-propulsion test were identified through the bollard pull test and the reliability of the self-propulsion test was secured through the free running test. Finally, by adding some procedures and data acquisition to the ITTC interpretation procedure, I propose an experimental performance estimation method for waterjet amphibious armored vehicles.
In conclusion, the performance data of the Box-type waterjet amphibious armored vehicle were obtained through the model test, and the appropriate experimental performance estimation method was developed and presented
Language
kor
URI
https://hdl.handle.net/10371/150783
Files in This Item:
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Naval Architecture and Ocean Engineering (조선해양공학과)Theses (Master's Degree_조선해양공학과)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse