Publications

Detailed Information

First-principles investigation of charge trap centers in amorphous silicon nitride

DC Field Value Language
dc.contributor.advisor한승우-
dc.contributor.author강기재-
dc.date.accessioned2019-05-07T05:16:13Z-
dc.date.available2019-05-07T05:16:13Z-
dc.date.issued2019-02-
dc.identifier.other000000155911-
dc.identifier.urihttps://hdl.handle.net/10371/151807-
dc.description학위논문 (박사)-- 서울대학교 대학원 : 공과대학 재료공학부, 2019. 2. 한승우.-
dc.description.abstractOver the last decade, the needs to overcome the scaling limitation and the reliability problem of the floating-gate memory have increased significantly. One of the most promising alternatives to the conventional floating-gate memory is the charge-trap flash, in which N-deficient amorphous silicon nitride is utilized as the charge-trap layer. The localized nature of charge traps in amorphous silicon nitride makes the electrons in the trap layer immobile, thereby suppressing the trap-assisted tunneling. In spite of the long history and wide usage in commercial devices, the atomistic origin of the trap states in amorphous silicon nitride is still elusive, which could be a hurdle against further engineering the material property and improving device performances.

In this dissertation, we investigate the charge-trapping behavior of N-deficient amorphous silicon nitride using first-principles calculations. Firstly, the stoichiometric amorphous silicon nitride are generated using melt-quench procedure. The structural and electrical properties are in good agreement with experiment, confirming the reliability of the computational methods. Secondly, amorphous structures with one less nitrogen atom from nominal stoichiometry are generated. The N deficiency mainly produces one Si-Si bond and one Si dangling bond which is called K center. Among these two local structures, only the K centers act as possible trap sites. We estimate the transition levels of K centers and find that the Hubbard U energy is distributed from −1.14 to 1.11 eV. Even though a majority of K centers show positive U, the charge states of most centers in the ensemble are either positive or negative under the charge-neutrality condition. This results in `seemingly negative-U behavior which explains the diamagnetic signal in experiment. The charge-injection energy into K centers is evaluated based on the Franck-Condon approximation and the average trap depths for electrons and holes are in good agreement with experiment. Finally, amorphous silicon nitrides with large N deficiency and H impurities are generated. It is found that the large N deficiency leads to the formation of Si-cluster structures, and most of the H impurities passivate dangling bonds in the amorphous silicon nitride. Because the Si cluster is found to be inactive as a trap center and H atoms mostly serve as passivating agents, the remaining K center that is not passivated with H act as the major trap.
-
dc.description.abstract플로팅 게이트 메모리(floating-gate memory)의 스케일링 한계와 신뢰성 문제 극복에 대한 필요는 지난 십여 년간 현저히 증가해왔다. 질소가 부족한 비정질 질화규소를 전하 트랩층으로 사용하는 전하 트랩 메모리(charge trap memory)는 기존의 플로팅 게이트 소자를 대체할 수 있는 가장 유망한 차세대 소자 중 하나이다. 비정질 질화규소가 이미 상용되는 소자에 널리 쓰이고 있음에도 불구하고 그 전하 트랩의 원자적 특성은 아직 불명확하며, 이는 향후 소자 성능 향상을 꾀하는 데 장애물로 작용할 수 있다.

이 논문에서는 질소가 부족한 비정질 질화규소의 전하 트랩 거동을 제일원리 계산을 통해 연구하였다. 첫 번째로, 정량비적 비정질 질화규소의 원자 배치를 melt-quench 과정을 통해 생성하고, 만들어진 원자 구조의 구조적, 전기적 특성이 기존의 연구와 일치하는 것을 확인함으로써 본 접근법의 신뢰도를 검증하였다. 두 번째로, 화학량론적 조성에서 질소 원자가 하나 부족한 비정질 구조를 생성한 결과 두 개의 규소로 이루어진 결합과 K 센터라고 불리는 규소의 불포화결합이 형성됨을 확인하였고, 두 개의 국소 구조 중 오직 K 센터만 트랩으로서 작용함을 보였다. K 센터의 전하 전이 레벨을 계산한 결과 Hubbard U 에너지가 –1.14 eV에서 1.11 eV 사이에 넓게 분포해 있음을 발견하였다. 또한 상당수의 K 센터가 양의 U 값을 가짐에도 불구하고 K 센터의 대부분이 전하 중성 조건 하에 양전하 또는 음전하를 띄는 것을 확인함으로써, 실험적으로 관측되는 비정질 질화규소의 반자성을 설명하는 Seemingly negative-U 거동을 제안하였다. Franck-Condon 근사에 기반하여 전자와 정공에 대한 K 센터의 전하 트랩 레벨 분포를 계산하고 실험과 잘 일치함을 확인하였다. 마지막으로, 수소 결함이 포함되고 질소가 크게 부족한 비정질 질화규소를 생성하여 비화학양론적 조성에 의한 규소 클러스터 구조의 형성과 수소 결함에 의한 불포화결합의 부동화(passivation)를 확인하였다.
-
dc.description.tableofcontents1. Introduction 1

1.1 Overview of charge-trap memory 1

1.2 N deficiency and H impurities in a-Si3N4 6

1.3 Atomistic modeling of amorphous materials 8

1.4 Goal of the dissertation 10

1.5 Organization of the dissertation 11

2. Theoretical background 12

2.1 Density functional theory (DFT) 12

2.1.1 Hamiltonian of many-body system 12

2.1.2 Hohenberg-Kohn theorem 14

2.1.3 Kohn-Sham equation 17

2.1.4 Exchange-correlation energy 20

2.2 Hybrid functional 22

2.3 Defect formation energy 24

3. Fundamental properties of stoichiometric a-Si3N4 25

3.1 Introduction 25

3.2 Computational methods 27

3.2.1. Computational setup 27

3.2.2. Modeling of amorphous structures 28

3.3 Results and discussion 35

3.3.1 Structural properties of stoichiometric a-Si3N4 35

3.3.2 Electronic properties of stoichiometric a-Si3N4 40

4. Investigation of trap centers in a-Si3N4x 44

4.1 Introduction 44

4.1.1. K center and negative-U behavior 46

4.1.2. First-principles studies on K center in c-Si3N4 49

4.1.3. First-principles studies on K center in a-Si3N4x 53

4.1.4. Charge-trap level from TSCIS 54

4.1.5. N center from nitrogen dangling bond 58

4.2 Computational methods 59

4.2.1. Computational setup 59

4.2.2. Modeling of amorphous structures 60

4.2.3. Formation energy of K center 61

4.2.4. Charge-discharge cycles on defects 62

4.2.5. Cell-size effect on formation energy in c-Si3N4 63

4.3 Results and discussion 66

4.3.1. Properties of K center in a-Si3N4x 66

4.3.2. Charge-trapping test for Si-Si bond 71

4.3.3 Transition level diagram 73

4.3.4 Charge-injection level of K center 80

5. Effect of H impurities and large N deficiency in a-Si3N4x 94

5.1 Introduction 94

5.2 Computational methods 96

5.2.1 Computational setup 96

5.2.2. Modeling of amorphous structures 97

5.3 Results and discussion 98

5.3.1. H impurities in a-SiN1.08:H 98

5.3.2. Formation of Si cluster in a-SiN1.08:H 101

5.3.3. DOS of Si cluster in a-SiN1.08:H 104

6. Conclusion 106

Bibliography 108
-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subject.ddc620.1-
dc.titleFirst-principles investigation of charge trap centers in amorphous silicon nitride-
dc.typeThesis-
dc.typeDissertation-
dc.description.degreeDoctor-
dc.contributor.affiliation공과대학 재료공학부-
dc.date.awarded2019-02-
dc.identifier.uciI804:11032-000000155911-
dc.identifier.holdings000000000026▲000000000039▲000000155911▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share