Browse

Gradient potential theory for nonlinear elliptic problems
비선형 편미분 방정식에 대한 그래디언트 퍼텐셜 이론

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors
윤영훈
Advisor
변순식
Major
자연과학대학 수리과학부
Issue Date
2019-02
Publisher
서울대학교 대학원
Description
학위논문 (박사)-- 서울대학교 대학원 : 자연과학대학 수리과학부, 2019. 2. 변순식.
Abstract
이 학위 논문에서는 측도데이터를 갖는 비선형 편미분 방정식에 대하여 해의 그라디언트가 각 점 별로 주어진 데이터의 1-리즈 퍼텐셜 가늠을 갖는다는 것을 다양한 비표준 성장조건 하에서 증명하였다.

특히 1-리즈 퍼텐셜이 선형 연산자에 대응하는 퍼텐셜이라는 사실로 인하여 선형화 기법을 통하여 주어진 비선형 연산자를 선형 연산자로 근사하는 방법이 요구된다. 이러한 과정에서 현재까지의 접근법에는 주어진 편미분 방정식의 성장조건이 2차보다 높은 차수인 경우와 낮은 차수인 경우에 대해 근본적인 차이가 있었다.

위와 같은 차이는 이 논문의 4장의 접근법을 통하여 주어진 데이터가 약해의 존재성을 보장할 수 있는 경우에 대하여 극복된다. 그러나 측도데이터를 갖는 방정식에 대해서는 아직까지 위와 같은 통합적인 접근법이 제시되지 않았으며, 이러한 접근법을 제시하는 첫 걸음으로서 5장에서 측도데이터를 갖는 올릭즈 성장조건 방정식에 대하여 칼데론 지그먼드 이론을 설명하고 있다.
The objective of this thesis is to provide a sharp gradient potential estimate for nonlinear elliptic problems under non-standard growth assumptions. The estimates have been found from the attempts to develop a unified method for the purpose of obtaining sharp pointwise bounds of the gradient of solutions.

First, we obtain gradient potential estimates, by using linearization techniques along with an exit time argument, for two non-autonomous elliptic measure data problems with superquadratic growth. One is variable exponent case the other is mild phase transition case. In gradient potential theory for measure data problems, a unified method is still unknown, that covers both superquadratic and subquadratic cases, because of the difficulty stemming from the absence of energy solutions to such problems.

However, once we take energy solutions into account, we devise a new unified method to deal with superquadratic and subquadratic cases simultaneously. In particular, we show partial regularity of the gradient of solutions to subquadratic elliptic systems without the quasi-diagonal structure via Riesz potentials, when the given data belong to suitable Lebesgue spaces to ensure the existence of weak solutions.

In the process of a further research on developing a unified method for measure data problems, we establish global Calderon-Zygmund estimates for such problems with general growth via fractional maximal functions.
Language
eng
URI
https://hdl.handle.net/10371/152899
Files in This Item:
Appears in Collections:
College of Natural Sciences (자연과학대학)Dept. of Mathematical Sciences (수리과학부)Theses (Ph.D. / Sc.D._수리과학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse