Browse

Multi-objective design under uncertainty using a Kriging-based evolutionary optimizer

Cited 0 time in Web of Science Cited 0 time in Scopus
Issue Date
2019-05-26
Citation
13th International Conference on Applications of Statistics and Probability in Civil Engineering(ICASP13), Seoul, South Korea, May 26-30, 2019
Abstract
Μulti-objective design problems with probabilistic objectives estimated through stochastic simulation are examined in this paper. For the efficient solution of such problems a surrogate model based optimization scheme, termed MODU-AIM, was recently developed by the authors. Foundations of MODU-AIM are the formulation of the surrogate model in the augmented input space, composed of both the design variables and the uncertain model parameters, and an iterative implementation that adaptively controls surrogate model accuracy. At each iteration, a new surrogate model is developed, and a new Pareto front is identified using epsilon-constraint numerical optimization scheme. This front is then compared to the previous iterations front to examine convergence. If convergence has not been established, a set of refinement experiments is identified for the surrogate model development and process proceeds to the next iteration. In this paper, integration of multi-objective evolutionary optimizers (MOEA) is considered for MODU-AIM. This integration extends MODU-AIMs applicability and numerical efficiency and requires a number of modifications and enhancements to address the unique traits of MOEA optimizers with respect to the Pareto front identification.
Language
English
URI
https://hdl.handle.net/10371/153295
DOI
https://doi.org/10.22725/ICASP13.079
Files in This Item:
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Civil & Environmental Engineering (건설환경공학부)ICASP13
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse