Quantification of Aleatory Uncertainty in Modal Updating Problems using a New Hierarchical Bayesian Framework

Cited 0 time in Web of Science Cited 0 time in Scopus

Sedehi, Omid; Teymouri, Daniz; Katafygiotis, Lambros S.; Papadimitriou, Costas

Issue Date
13th International Conference on Applications of Statistics and Probability in Civil Engineering(ICASP13), Seoul, South Korea, May 26-30, 2019
Identification of structural damage requires reliable assessments of damage-sensitive quantities, including natural frequencies, mode shapes, and damping ratios. Lack of knowledge about the correct value of these parameters introduces a particular sort of uncertainty often referred to as epistemic uncertainty. This class of uncertainty is reducible in a sense that it can be decreased by enhancing the modeling accuracy and collecting new information. On the contrary, such damage-sensitive parameters might also have intrinsic randomness arising from unknown phenomena and effects, which gives rise to an irreducible category of uncertainty often referred to as aleatory uncertainty. The present Bayesian modal updating methodologies can produce reasonable quantification of the epistemic uncertainties, while they often fail to account for the aleatory uncertainties. In this paper, a new multilevel (hierarchical) probabilistic modeling framework is proposed to bridge this significant gap in uncertainty quantification and propagation of structural dynamics inverse problems. Since multilevel model calibration schemes establish a complicated model structure associated with additional parameters and variables, their computational costs are often considerable, if not prohibitive. To reduce the computational costs, the modal updating procedure is simplified using a second-order Taylor expansion approximation. This approximation is combined with a Markov chain Monte-Carlo (MCMC) sampling method to compute marginal posterior distributions of quantities of interest. The proposed framework is illustrated using one simple experimental example. As a result, it is demonstrated that the proposed framework surpasses the present Bayesian modal updating methods as it accounts for both the aleatory and epistemic uncertainties.
Files in This Item:
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Civil & Environmental Engineering (건설환경공학부)ICASP13
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.