Browse

Empirical bayes method for tight clustering
경험적 베이즈 방법을 이용한 타이트한 군집화

DC Field Value Language
dc.contributor.advisor임요한-
dc.contributor.author안수현-
dc.date.accessioned2019-07-10T06:02:58Z-
dc.date.available2019-07-10T06:02:58Z-
dc.date.issued2011-08-
dc.identifier.other000000031506-
dc.identifier.urihttps://hdl.handle.net/10371/160010-
dc.identifier.urihttp://dcollection.snu.ac.kr:80/jsp/common/DcLoOrgPer.jsp?sItemId=000000031506ko_KR
dc.description학위논문 (석사)-- 서울대학교 대학원 : 통계학과, 2011.8. 임요한.-
dc.format.extentiii, 28장-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subject자율 학습-
dc.subject타이트한 군집화-
dc.subject기준점-
dc.subject경험적 베이즈 방법-
dc.subject유한 혼합 모형-
dc.subjectUnsupervised learning-
dc.subjectTight clustering-
dc.subjectCut points-
dc.subjectEmpirical Bayes method-
dc.subjectFinite mixture model-
dc.titleEmpirical bayes method for tight clustering-
dc.title.alternative경험적 베이즈 방법을 이용한 타이트한 군집화-
dc.typeThesis-
dc.typeDissertation-
dc.description.degreeMaster-
dc.contributor.affiliation통계학과-
dc.date.awarded2011-08-
Appears in Collections:
College of Natural Sciences (자연과학대학)Dept. of Statistics (통계학과)Theses (Master's Degree_통계학과)
Files in This Item:
There are no files associated with this item.
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse