Publications

Detailed Information

Spatial and temporal mapping of pacemaker activity in interstitial cells of Cajal in mouse ileum in situ

DC Field Value Language
dc.contributor.authorPark, Kyu Joo-
dc.contributor.authorHennig, Grant W-
dc.contributor.authorLee, Hyun-Tai-
dc.contributor.authorSpencer, Nick J-
dc.contributor.authorWard, Sean M-
dc.contributor.authorSmith, Terence K-
dc.contributor.authorSanders, Kenton M-
dc.date.accessioned2009-11-26T06:50:44Z-
dc.date.available2009-11-26T06:50:44Z-
dc.date.issued2005-12-31-
dc.identifier.citationAm J Physiol Cell Physiol. 2006 May;290(5):C1411-27. Epub 2005 Dec 28.en
dc.identifier.issn0363-6143 (Print)-
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16381798-
dc.identifier.urihttps://hdl.handle.net/10371/16052-
dc.description.abstractSpontaneous electrical pacemaker activity occurs in tunica muscularis of the gastrointestinal tract and drives phasic contractions. Interstitial cells of Cajal (ICC) are the pacemaker cells that generate and propagate electrical slow waves. We used Ca(2+) imaging to visualize spontaneous rhythmicity in ICC in the myenteric region (ICC-MY) of the murine small intestine. ICC-MY, verified by colabeling with Kit antibody, displayed regular Ca(2+) transients that occurred after electrical slow waves. ICC-MY formed networks, and Ca(2+) transient wave fronts propagated through the ICC-MY networks at approximately 2 mm/s and activated attached longitudinal muscle fibers. Nicardipine blocked Ca(2+) transients in LM but had no visible effect on the transients in ICC-MY. beta-Glycyrrhetinic acid reduced the coherence of propagation, causing single cells to pace independently. Thus, virtually all ICC-MYs are spontaneously active, but normal activity is organized into propagating wave fronts. Inhibitors of dihydropyridine-resistant Ca(2+) entry (Ni(2+) and mibefradil) and elevated external K(+) reduced the coherence and velocity of propagation, eventually blocking all activity. The mitochondrial uncouplers, FCCP, and antimycin and the inositol 1,4,5-trisphosphate receptor-inhibitory drug, 2-aminoethoxydiphenyl borate, abolished rhythmic Ca(2+) transients in ICC-MY. These data show that global Ca(2+) transients in ICC-MYs are a reporter of electrical slow waves in gastrointestinal muscles. Imaging of ICC networks provides a unique multicellular view of pacemaker activity. The activity of ICC-MY is driven by intracellular Ca(2+) handling mechanisms and entrained by voltage-dependent Ca(2+) entry and coupling of cells via gap junctions.en
dc.language.isoenen
dc.publisherAmerican Physiological Societyen
dc.subjectAction Potentials/*physiologyen
dc.subjectAnimalsen
dc.subjectBiological Clocks/*physiologyen
dc.subjectCalcium Signaling/*physiologyen
dc.subjectCells, Cultureden
dc.subjectFemaleen
dc.subjectIleum/cytology/*physiologyen
dc.subjectMaleen
dc.subjectMiceen
dc.subjectMice, Inbred C57BLen
dc.subjectMicroscopy, Fluorescence/*methodsen
dc.subjectMyocytes, Smooth Muscle/*physiologyen
dc.titleSpatial and temporal mapping of pacemaker activity in interstitial cells of Cajal in mouse ileum in situen
dc.typeArticleen
dc.contributor.AlternativeAuthor박규주-
dc.contributor.AlternativeAuthor이현태-
dc.identifier.doi10.1152/ajpcell.00447.2005-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share