Publications

Detailed Information

An Experimental Study on Flame Transfer Function and Combustion Instability Mechanism in a Gas Turbine Combustor : 가스터빈 연소기에서 화염전달함수 및 연소불안정 발현 원인에 대한 실험적 연구

DC Field Value Language
dc.contributor.advisor윤영빈-
dc.contributor.author주성필-
dc.date.accessioned2019-10-21T01:44:05Z-
dc.date.available2019-10-21T01:44:05Z-
dc.date.issued2019-08-
dc.identifier.other000000156279-
dc.identifier.urihttps://hdl.handle.net/10371/161891-
dc.identifier.urihttp://dcollection.snu.ac.kr/common/orgView/000000156279ko_KR
dc.description학위논문(박사)--서울대학교 대학원 :공과대학 기계항공공학부,2019. 8. 윤영빈.-
dc.description.abstract연소불안정은 연소장에서의 압력섭동과 동압섭동의 간섭 때문에 일어나는 현상으로 강한 화염의 떨림과 강한 동압섭동이 발생하여, 연소불안정이 강하게 발생하는 경우 연소기 라이너의 소손으로 직결되는 중요한 문제이다. 그렇기 때문에 이러한 연소불안정이 발생하는 연소환경에 대한 예측 및 연소불안정이 발생하였을 때, 이를 저감하는 연구 또한 많은 연구진들에 의하여 진행되고 있다.
화염 전달함수는 가스터빈 연소기라는 블랙박스에 입력 값과 출력 값에 대한 전달함수로 정의가 되며 입력 값은 연료나 공기의 섭동 값(u), 출력 값은 화염의 섭동(q)으로 계측할 수 있다. 화염 전달함수는 복소수 형태로 표현이 되는데 복소수에서의 실수부는 입력 값이 출력 값에 미치는 증폭 값(gain)을 의미하며 허수부는 시간지연(phase)를 의미한다. 이러한 화염 전달함수는 연소불안정을 예측하는 코드의 입력 값으로 사용이 되며 연소기의 특성을 파악할 수 있는 계측 값으로 활용된다.
본 연구에서는 연소 불안정이 발생하는 연소장치에서의 다양한 연료조성에 대한 연소불안정의 특성과 정적 특성에 대한 연구를 수행하였다. 또한 배기배출물에 대한 특성을 파악하였으며, 비활성기체를 이용한 배기배출물 저감 특성에 대한 연구를 수행하였다. 마지막으로 연소불안정 연구의 일환인 화염전달함수를 계측하고 화염전달함수에서 나타나는 물리적인 특성을 파악하였으며, 연료의 섭동이 아닌 외부 영향에 대한 간섭을 효과적으로 제외한 화염전달함수의 계측 및 계산방법을 제시하였으며, 이렇게 도출해낸 화염전달함수를 이용하여 연소불안정을 모델링하여 실제 발생하는 연소불안정 주파수와 비교하는 연구를 수행하였다.
상기 연구를 통하여 LDI 연소기에서 다양한 연료조건에 대한 연소불안정 특성을 파악하였으며, 연소불안정이 특성조건에서 높은 주파수로 천이하는 특성을 확인할 수 있었다. 또한 연소불안정을 예측하기 위한 모델링을 수행하였으며, 이를 위하여 정확도 높은 화염전달함수 계측을 함께 수행하였다. 본 논문에서 제시하는 화염전달함수 계측방법을 이용하여 실제 연소장 전단에서 발생하는 외란에 독립적으로 작동되는 화염전달함수를 구할 수 있으며, 이러한 연구결과는 실제 가스터빈에서 발생되는 연소불안정과 화염전달함수를 계측하는 선행연구자료로 활용될 수 있을 것으로 기대 된다.
-
dc.description.abstractRecently, the interests for energy depletion and rapid climate change have emerged around the world. To address the problems, the research about clean coal technology has been conducted actively. The business, which gasification accounting for a large proportion of the technology, has been performed in USA, China, Korea, etc. Gasification technology can generate synthetic gas which is spotlighted as a next generation of fuel from solid coal through carbon capture and storage technique (CCS). However, the study is still not enough to investigate the combustion characteristics. For this reason, there are many researchers studying about fuel flexibilities and combustion characteristics of the synthesis gas.
NOx emission characteristics is similar at the same heat load because of the same Wobbe index based on higher heating values of the fuel compositions. Moreover, NOx increases with increasing equivalence ratio and heat load. This characteristics investigate that major NOx mechanism is thermal NOx. CO emission rapidly peaks near stoichiometric condition and it is affected OH radical in chemical reaction. Carbon dioxide is more effective to NOx reduction than nitrogen diluent because of its high diluent heat capacity. Combustion instability should avoid in order to prevent the combustor liner thermal and fatigue damage.
Combustion dynamic characteristics of hydrogen/methane flames and the flame response to fuel flow fluctuation in a model lean-direct injection gas turbine combustor. The results show that the higher frequency longitudinal thermoacoustic instability is triggered as hydrogen/methane ratios increase. The mode shift is accompanied by shortening flame length and hence decreasing convection time delay between fuel injection and flame location. Flame transfer function (FTF) subject to fuel flow rate modulation is determined over a range of frequency for hydrogen/methane volume ratios of 25:75, 50:50, and 75:25 at a fixed equivalence ratio of 0.55. The input/output function of FTF is the velocity fluctuation of fuel flow at the inlet of combustor/the heat release fluctuation of whole flame, respectively. Due to the difficulty of measuring fuel flow velocity at the inlet of combustor while flame exists, the fuel transfer function (FLTF) is measured and used along with the intermediate flame transfer function (ITF) to determine the FTF. The transfer functions are measured at frequency up to 600 Hz and the FTF above 600 Hz is determined from flame response at the higher harmonic frequency. Results of the FLTF measurement show that an acoustic resonance is formed within fuel injector and the resonance frequency changes as the hydrogen/methane ratio as well as the length of fuel feedline changes. The gain of FTF at a given frequency decrease as the hydrogen content increases and the absolute value of the slope of phase plot which is related to the convection time delay between fuel injector tip and flame location decreases as the hydrogen enrichment ratio increases. Using the measured flame transfer function as input to an open-source code (OSCILOS), the occurrence of instability is predicted and compared with experimental results. Modelling results agree very well with experimental data in predicting the occurrence of unstable combustion, the frequency at which unstable combustion occurs and the acoustic mode inside combustor.
-
dc.description.tableofcontentsABSTRACT i
LIST iv
LIST OF FIGURES vii
LIST OF TABLES xi
NOMENCLATURE xii

CHAPTER 1
INTRODUCTION 1

CHAPTER 2
EXPERIMENT AND MEASUREMENT SYSTEMS 9
2.1 Combustor and Nozzles 9
2.2 Flame Imaging 12
2.2.1 Chemiluminescence Spectroscopy 12
2.2.2 Abel Transform 14
2.3 Laser Diagnostics 15
2.3.1 OH-PLIF Measurements 15
2.3.2 PIV Measurements 20
2.4 Flame Transfer Function Measurement 24
2.5 Instability Prediction by 1-D Lumped Network Model 27
2.5.1 Combustor Geometry 28
2.5.2 Flame Position 29
2.5.3 Thermal Properties 32
2.5.4 Flame Model 32
2.5.5 Boundary Condition 34


CHAPTER 3
STATIC (NOx & FLAME STRUCTURE) CHARACTERISTICS
OF SNG COMBUSTION 35
3.1 Background and Test Conditions 35
3.2 Emission (NOx and CO) Characteristis of SNG Combustion without
N2 and CO2 dilutions 38
3.3 NOx Reduction Characteristics of SNG Combustion with
N2 and CO2 Dilution 40
3.4 Dump Plane Temperature and Flame Structure 42

CHAPTER 4
HIGH FREQUENCY TRANSITION CHARACTERISTICS OF
SYNTHETIC NATURAL GAS (H2/CH4) COMBUSTION 44
4.1 Background and Test Conditions 44
4.2 Experimental Methods 48
4.3 Exhaust Gas Emission 50
4.4 Mode Shift Phenomenon in Combustion Instability
with Respect to the H2 Ratio 53
4.5 Combustion Instability Mode Shift for Different Heat Loads 56
4.6 OH* Chemiluminescence (Flame) Characteristics 60

CHAPTER 5
THERMO-ACOUSTIC INSTABILITY AND FLAME TRANSFER
FUNCTION MEASUREMENT 65
5.1 Background and Objectives 65
5.2 Description of Experimental and Modeling Approach 68
5.2.1 Model Gas Turbine Combustor and Instrumentations 68
5.2.2 Experimental Conditions 70
5.2.3 Measurement of Flame Transfer Function (FTF) 71
5.2.4 Combustion Instability Modeling 76
5.3 Results and Discussions 78
5.3.1 Characterization of Naturally Occurring Combustion Instability 78
5.3.2 Flame Transfer Function (FTF) 81
5.3.3 Modeling of Thermo-acoustic instability 90
5.4 Flame Structure in Flame Transfer Function 101

CHAPTER 6
CONCLUSION 104


REFERENCES 107

ABSTRACT IN KOREAN 116
-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjectNon-premixed Flame-
dc.subjectTurbulent Flame-
dc.subjectEINOx-
dc.subjectFlame Stability-
dc.subjectFlame Length-
dc.subjectLDI combustor-
dc.subjectThermo-acoustic instability-
dc.subjectPIV-
dc.subjectOH-PLIF-
dc.subjectFlame transfer function-
dc.subjectOSCILOS-
dc.subjectHigher transition-
dc.subjectSNG Combustion.-
dc.subject.ddc621-
dc.titleAn Experimental Study on Flame Transfer Function and Combustion Instability Mechanism in a Gas Turbine Combustor-
dc.title.alternative가스터빈 연소기에서 화염전달함수 및 연소불안정 발현 원인에 대한 실험적 연구-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthorJoo seongpil-
dc.contributor.department공과대학 기계항공공학부-
dc.description.degreeDoctor-
dc.date.awarded2019-08-
dc.contributor.major우주항공공학전공-
dc.identifier.uciI804:11032-000000156279-
dc.identifier.holdings000000000040▲000000000041▲000000156279▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share