Publications

Detailed Information

Development of small-molecule chemical probes for target identification: Design, synthesis and biological evaluation of 1,3,4-oxadiazin-5(6H)-one and indolizino[3,2,c]quinoline scaffolds : 표적 규명을 위한 화학 프로브의 개발: 1,3,4-oxadiazin-5(6H)-one과 indolizino[3,2,c]quinoline 골격의 화합물 설계, 합성 및 생물학적 평가

DC Field Value Language
dc.contributor.advisor이지연-
dc.contributor.author임범희-
dc.date.accessioned2019-10-21T03:11:58Z-
dc.date.available2019-10-21T03:11:58Z-
dc.date.issued2019-08-
dc.identifier.other000000156662-
dc.identifier.urihttps://hdl.handle.net/10371/162217-
dc.identifier.urihttp://dcollection.snu.ac.kr/common/orgView/000000156662ko_KR
dc.description학위논문(박사)--서울대학교 대학원 :약학대학 약학과,2019. 8. 이지연.-
dc.description.abstractI. Metal-free and mild approach to 1,3,4-oxadiazol-2(3H)-ones via oxidative C-C bond cleavage of 1,3,4-oxadiazin-5(6H)-ones
A mild metal-free approach to 1,3,4-oxadiazol-2(3H)-ones via 1,3,4-oxadiazin-5(6H)-ones is described. This novel transformation, promoted by the electron-withdrawing p-substituents on the phenyl group at the α-carbonyl position, features a tandem reaction consisting of oxidative hydroxylation and C-C bond cleavage using molecular oxygen. The method utilizes K2CO3 in CH3CN without any oxidants, transition metals, or additives, enabling the tunable synthesis of 1,3,4-oxadiazin-5(6H)-ones, 1,3,4-oxadiazol-2(3H)-ones, and α-ketoamides under mild aerobic conditions.
Keyword: 1,3,4-oxadiazol-2(3H)-one, 1,3,4-oxadiazin-5(6H)-one, Oxidative C-C bond cleavage, Metal free reaction, molecular oxygen

II. Target identification of a 1,3,4-oxadiazin-5(6H)-one anticancer agent via photoaffinity labelling
Rational design and synthetic feasibility are critical factors for the photoaffinity labelling (PAL) approach, which can identify protein targets of bioactive small molecules under native cellular conditions. In this study, we developed 1,3,4-oxadiazin-5(6H)-ones-derived photoaffinity labelling probes (OPALs) for LL-2003, a previously reported potential anticancer agent against IGF-1R and Src. Our photoaffinity labelling strategy enabled successful photo crosslinking of the probes (OPAL-6 and OPAL-8) with the target proteins in both mammalian cell lysates and live MCF7, A549, HepG2 and HeLa cells in situ. In vitro and in situ labelling demonstrated different patterns and expression levels of the proteome, and the strongest band for Src appeared in the A549 cell line. An in-gel fluorescence scan combined with MS/MS analysis of the IGF-1R overexpressed insect proteome labelled by OPAL-6 and OPAL-8 identified the binding location of the synthesized probes.
Keyword: Photoaffinity labelling, Target identification, 1,3,4-oxadiazin-5(6H)-ones,
IGF-1R, Src

III. Novel turn-on fluorescent biosensors for selective detection of cellular Fe3+ in lysosomes
Iron-selective turn-on sensors are indispensable tools for understanding iron-related cell death processes and human diseases. In this study, we report a novel class of fluorescent sensors derived from an indolizino[3,2-c]quinoline scaffold that exhibit high selectivity for Fe3+ over other biologically abundant cations in cells, including Fe2+, Al3+, Zn2+, and Mn2+. IQ44 displays fluorescence enhancement upon binding with Fe3+ in both ethanol and water. In aqueous solution, IQ44 exists as 150 nm nanoparticles. The suppressed fluorescent emission of IQ44 nanoparticles in water is switched on in response to Fe3+, working as a turn-on nanoparticle sensor. Structure-property relationship analysis with IQ derivatives revealed that the thiophene ring confers selectivity for Fe3+. By installing thiophene in IQ44 as a selectivity-tuning handle, fluorescence in the presence of Fe3+ resulting from restriction of intramolecular rotation (RIR) and increased torsion angle induced by iron demonstrated that IQ44 is specifically localized in lysosomes, where it recognizes cellular Fe3+ in live cells, as determined using confocal microscopy. In addition, the increased fluorescent puncta of IQ44 in the presence of Fe3+ colocalized well with the RFP-tagged LC3 proteins (pmRFP-LC3), enabling the detection of the autophagy process.
Keyword: Fluorescent biosensor, Fe3+ sensor, Indolizino[3,2,c]quinolone, Lysosome, Autophage
-
dc.description.abstractI. Metal-free and mild approach to 1,3,4-oxadiazol-2(3H)-ones via oxidative C-C bond cleavage of 1,3,4-oxadiazin-5(6H)-ones
산화성 탄소-탄소 결합 분해반응을 수반한 1,3,4-oxadiazin-5(6H)-ones 으로부터 1,3,4-oxadiazol-2(3H)-ones의 전환

본 연구에서는 금속을 사용하지 않은 온화한 반응 조건 하에서 1,3,4-oxadiazin-5(6H)-one이 산화성의 탄소-탄소 결합 분해 반응 (oxidative C-C bond cleavage)을 통해 1,3,4-oxadiazol-2(3H)-one 구조로 전환되는 새로운 합성법을 개발하였다. 이 새로운 전환 반응은 α-carbonyl 위치에 있는 phenyl기의 p–위치에 전자 당김 작용기 (electron donating group)에 의해 촉진되며 산소 분자에 의한 산화성 하이드록실화 반응(oxidative hydroxylation)에 이은 탄소-탄소 결합 분해반응을 통해 일어난다는 것을 확인하였다. 전이 금속 촉매나 산화제, 어떠한 첨가제 없이 산소 존재 하에 K2CO3를 이용하는 유독하지 않은 반응 조건으로 용이하게 1,3,4-oxadiazol-2(3H)-one을 합성할 수 있었다. 또한 이 반응의 조건을 조절함으로써 1,3,4-oxadiazin-5(6H)-one과 1,3,4-oxadiazol-2(3H)-one, 중간체인 α-keto- maide을 선택적으로 생성할 수 있었다.

주요어 : 1,3,4-oxadiazol-2(3H)-one, 1,3,4-oxadiazin-5(6H)-one, Oxidative C-C bond cleavage, Metal free reaction, molecular oxygen


II. Target identification of a 1,3,4-oxadiazin-5(6H)-one anticancer agent via photoaffinity labelling
항암 활성물질의 표적 규명을 위한 1,3,4-oxadiazin-5(6H)-ones 구조 기반의 화학 프로브 개발

생물학적 활성 물질에 의한 표적 단백질의 규명에 쓰이는 광반응 표지 (Photoaffinity labelling, PAL) 물질 개발에 있어서 합리적 분자 설계와 합성의 용이성은 매우 중요한 요소이다. 본 연구에서는 IGF-1R과 Src를 이중 타겟으로 하는 항암활성 물질인 LL-2003을 바탕으로 1,3,4-oxadiazin-5(6H)-ones 구조 기반의 광반응 표지 물질 (Oxa-photoaffinity labelling probe, OPAL)을 성공적으로 합성하였다. 또한 OPAL-6과 OPAL-8 프로브는 MCF7, A549, HepG2, HeLa의 암세포에 대해 live cell과 cell lysate 상태 모두에서 공유결합 형성을 통하여 표적 단백질에 성공적으로 표지되는 것을 확인하였다. OPAL 프로브를 이용한 in vitro와 in situ 표지 실험을 통하여 각각의 단백질 발현의 정도와 양상이 세포에 따라 다른 것을 발견하였고 그 중 A549 세포의 Src 단백질을 가장 잘 표지하는 결과를 얻었다. OPAL-6과 OPAL-8 프로브로 IGF-1R이 과발현된 곤충세포를 이용한 표적 확인 실험을 진행하였고 in-gel 형광 결과와 더불어 LC-MS/MS 분석을 통해 IGF-1R과의 결합 위치를 확인하였다.

주요어 : Photoaffinity labelling, Target identification, 1,3,4-oxadiazin-5(6H)-ones, IGF-1R, Src

III. Novel turn-on fluorescent biosensors for selective detection of cellular Fe3+ in lysosomes
라이소좀 선택적 철 (Fe3+) 탐지를 위한 새로운 바이오 형광 센서의 개발

선택적인 철 이온의 형광 센서는 철과 연관된 세포 사멸 기전과 나아가 인체 질병의 이해에 있어서 필수적인 도구 화합물이다. 본 연구에서는 높은 선택성으로 Fe3+를 감지하는 indolizino[3,2,c]quinolone (IQ) 골격에 기반한 새로운 유형의 형광 센서를 개발하였다. IQ44는 에탄올뿐만 아니라 물에서도 Fe3+를 감지하여 형광 증가를 보였다. 수용액 상에서 IQ44는 150 nm 정도의 크기의 나노 입자를 형성하였고, 물에서의 나노 입자 상태일 때에는 형광이 감소하였다가 Fe3+를 감지하였을 때에는 형광이 증가하였다. IQ 형광 센서 유도체들의 구조-기능 상관관계 분석을 통하여 IQ44의 선택적 Fe3+의 감지는 thiophene 고리에 의한 것임을 알아냈고, Fe3+와의 결합으로 인해 thiophene 고리의 회전이 제한됨에 따라 형광 증가를 보이는 것을 밝혔다.
공초점 형광 현미경 관찰을 통해 IQ44가 세포 내에서 Fe3+를 감지하여 형광 증가를 보이는 것을 확인하였고 또한 라이소좀에 특이적으로 잘 위치하는 것을 확인하였다. 더불어 pmRPF-LC3를 감염시킨 autophagosome과 IQ44가 동일하게 위치함과 동시에 형광 증가가 관찰되어 Fe3+가 관여하는 autophagy과정 역시 관찰할 수 있음을 확인하였다.

주요어 : Fluorescent biosensor, Fe3+ sensor, Indolizino[3,2,c]quinolone, Lysosome, Autophage
-
dc.description.tableofcontentsI. Metal-free and mild approach to 1,3,4-oxadiazol-2(3H)-ones via oxidative C-C bond cleavage of 1,3,4-oxadiazin-5(6H)-ones 1
1.1 Introduction 2
1.1.1 1,3,4-oxadiazol-2(3H)-ones and 1,3,4-oxadiazin-5(6H)-ones scaffolds 2
1.1.2 The metal-free and mild synthesis of 1,3,4-oxadiazol-2(3H) ones 5
1.2 Results and discussion 6
1.2.1 Optimization of oxidative C-C bond cleavage condition 6
1.2.2 Scope of substrates for C-C bond cleavage reaction 9
1.2.3 Effects of substituents on the cyclized product selectivity 11
1.2.4 Cyclized reactions with expanded substrate scope 18
1.2.5 Proposed mechanism for the formation of 1,3,4-oxadiazol-2(3H)-ones 19
1.2.6 Substituent effects on the product ratio 22
1.3 Conclusion 23
II. Target identification of a 1,3,4-oxadiazin-5(6H)-one anticancer agent via photoaffinity labelling 24
2.1 Introduction 25
2.1.1 Target identification in phenotype-based screening for drug discovery 25
2.1.2 Rational design of chemical probes 26
2.2 Results and discussion 29
2.2.1 Synthesis OPAL-6 and OPAL-10 29
2.2.2 Synthesis of photoaffinity tag and OPAL-8 31
2.2.3 Proteome reactivity profile of the OPALs 32
2.2.4 Identification of the binding location of OPAL-6 35
2.3 Conclusion 39
III. Novel turn-on fluorescent biosensors for selective detection of cellular Fe3+ in lysosomes 40
3.1 Introduction 41
3.1.1 Fluorescent sensors for detection of Fe3+ 41
3.1.2 Aggregation-induced emission 42
3.2 Results and discussion 44
3.2.1 Synthesis and metal sensing properties of IQ sensors 44
3.2.2 IQ44 as a nanoparticle sensor for Fe3+ in water 46
3.2.3 Structure-property relationships of IQ metal sensors 49
3.2.4 Bioimaging of IQ44 as a probe for Fe3+in live cells 52
3.2.5 pH effects on the fluorescence of IQ44 in lysosomes 57
3.2.6 X-ray crystallographic analysis 59
3.3 Conclusion 63
IV. Experimental 64
4.1 Experiments described in chapter I 64
4.1.1 General information 64
4.1.2 General synthetic procedure for 6a and 6c-6n 65
4.1.3 General synthetic procedure for 3a-3j 72
4.1.4 Synthesis of 4 78
4.1.5 General synthetic procedure for 5 78
4.1.6 Single crystal x-ray crystallographic data 81
4.2 Experiments described in chapter II 83
4.2.1 General information 83
4.2.2 Synthesis of OPAL-6 84
4.2.3 Synthesis of photoaffinity tag (9) for OPAL-8 86
4.2.4 Synthesis of OPAL-8 89
4.2.5 Synthesis of OPAL-10 90
4.2.6 In vitro and in situ labeling experiments 93
4.2.7 Recombinant protein expression 95
4.2.8 Photoaffinity labeling in insect cell lysate 96
4.2.9 LC-MS/MS analysis 97
4.3 Experiments described in chapter III 98
4.3.1 General information 98
4.3.2 Synthesis of indolizino[3,2-c]quinoline derivatives 98
4.3.3 Optical characterization 100
4.3.4 Time-resolved fluorescence measurement 101
4.3.5 Nanoaggregate characterization 102
4.3.6 Single crystal x-ray crystallographic data 103
V. References 105
VI. Appendix 122
VII. 국문초록 146
-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subject1,3,4-oxadiazol-2(3H)-one-
dc.subject1,3,4-oxadiazin-5(6H)-one-
dc.subjectOxidative C-C bond cleavage-
dc.subjectMetal free reaction-
dc.subjectmolecular oxygen-
dc.subjectPhotoaffinity labelling-
dc.subjectTarget identification-
dc.subject1,3,4-oxadiazin-5(6H)-ones-
dc.subjectIGF-1R-
dc.subjectSrc-
dc.subjectFluorescent biosensor-
dc.subjectFe3+ sensor-
dc.subjectIndolizino[3,2,c]quinolone-
dc.subjectLysosome-
dc.subjectAutophage-
dc.subject.ddc615-
dc.titleDevelopment of small-molecule chemical probes for target identification: Design, synthesis and biological evaluation of 1,3,4-oxadiazin-5(6H)-one and indolizino[3,2,c]quinoline scaffolds-
dc.title.alternative표적 규명을 위한 화학 프로브의 개발: 1,3,4-oxadiazin-5(6H)-one과 indolizino[3,2,c]quinoline 골격의 화합물 설계, 합성 및 생물학적 평가-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.department약학대학 약학과-
dc.description.degreeDoctor-
dc.date.awarded2019-08-
dc.contributor.major약품제조화학-
dc.identifier.uciI804:11032-000000156662-
dc.identifier.holdings000000000040▲000000000041▲000000156662▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share