Publications

Detailed Information

Heme oxygenase-1 is a key molecule underlying differential response of TW-37-induced apoptosis in human mucoepidermoid carcinoma cells

Cited 3 time in Web of Science Cited 4 time in Scopus
Authors

Yang, In-Hyoung; Ahn, Chi-Hyun; Cho, Nam-Pyo; Jin, Bohwan; Lee, WonWoo; Jung, Yun Chan; Hong, Seong Doo; Shin, Ji-Ae; Cho, Sung-Dae

Issue Date
2019-05
Publisher
Multidisciplinary Digital Publishing Institute (MDPI)
Citation
Molecules, Vol.24 No.9, p. 1700
Abstract
TW-37 is a small-molecule inhibitor of Bcl-2 family proteins, which can induce anti-cancer activities in various types of cancer. In the current study, we investigated the potential molecular mechanism underlying the differential response to TW-37-induced apoptosis in two human mucoepidermoid carcinoma (MEC) cell lines. The differential response and underlying molecular mechanism of human MEC cells to TW-37 was evaluated by trypan blue exclusion assay, western blotting, 4', 6-diamidino-2-phenylindole staining, annexin V/propidium iodide double staining, analysis of the sub-G1 population, human apoptosis array, and measurements of intracellular reactive oxygen species (ROS). TW-37 decreased cell viability and induced apoptosis in YD-15 cells, but not in MC3 cells. Proteome profiling using a human apoptosis array revealed four candidate proteins and of these, heme oxygenase-1 (HO-1) was mainly related to the differential response to TW-37 of YD-15 and MC3 cells. TW-37 also led to a significant increase in intracellular levels of ROS in YD-15 cells, which is associated with apoptosis induction. The ectopic expression of HO-1 recovered YD-15 cells from TW-37-induced apoptosis by reducing intracellular levels of ROS. The expression of HO-1 was reduced through both transcriptional and post-translational modification during TW-37-mediated apoptosis. We conclude that HO-1 is a potential indicator to estimate response to TW37-induced apoptosis in human MEC.
ISSN
1420-3049
Language
ENG
URI
https://hdl.handle.net/10371/163617
DOI
https://doi.org/10.3390/molecules24091700
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • School of Dentistry
  • Department of Dentistry
Research Area Discovery of molecular targets related to oral cancer metastasis and identification of signal transduction system, Identifying the role of immunological tolerance in oral cancer, Presenting a new concept oral cancer prevention and treatment strategy through identification of major molecular targets and mechanisms related to oral cancer development, 구강암 발병관련 주요 분자표적 및 기전 규명을 통한 신개념 구강암 예방 및 치료전략 제시, 구강암 전이관련 분자표적 발굴 및 신호전달체계 규명, 구강암에서 면연관용의 역할 규명

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share