Browse

A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement

DC Field Value Language
dc.contributor.authorKim, Jaemin-
dc.contributor.authorSon, Donghee-
dc.contributor.authorLee, Mincheol-
dc.contributor.authorSong, Changyeong-
dc.contributor.authorSong, Jun-Kyul-
dc.contributor.authorKoo, Ja Hoon-
dc.contributor.authorLee, Dong Jun-
dc.contributor.authorShim, Hyung Joon-
dc.contributor.authorKim, Ji Hoon-
dc.contributor.authorLee, Minbaek-
dc.contributor.authorHyeon, Taeghwan-
dc.contributor.authorKim, Dae-Hyeong-
dc.date.accessioned2020-02-17T04:27:03Z-
dc.date.available2020-02-17T04:27:03Z-
dc.date.issued2016-01-
dc.identifier.citationScience advances, Vol.2 No.1, p. e1501101-
dc.identifier.isbn2375-2548-
dc.identifier.issn2375-2548-
dc.identifier.other38048-
dc.identifier.urihttps://hdl.handle.net/10371/164316-
dc.description.abstractStrategies for efficient charge confinement in nanocrystal floating gates to realize high-performance memory devices have been investigated intensively. However, few studies have reported nanoscale experimental validations of charge confinement in closely packed uniform nanocrystals and related device performance characterization. Furthermore, the system-level integration of the resulting devices with wearable silicon electronics has not yet been realized. We introduce a wearable, fully multiplexed silicon nonvolatile memory array with nanocrystal floating gates. The nanocrystal monolayer is assembled over a large area using the Langmuir-Blodgett method. Efficient particle-level charge confinement is verified with the modified atomic force microscopy technique. Uniform nanocrystal charge traps evidently improve the memory window margin and retention performance. Furthermore, the multiplexing of memory devices in conjunction with the amplification of sensor signals based on ultrathin silicon nanomembrane circuits in stretchable layouts enables wearable healthcare applications such as long-term data storage of monitored heart rates.-
dc.subjectlangmuir-Blodgett assembly-
dc.subjectnanocrystal floating gate-
dc.subjectnonvolatile memory-
dc.subjectsilicon nanomembrane-
dc.subjectWearable electronics-
dc.titleA wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement-
dc.typeArticle-
dc.contributor.AlternativeAuthor김대형-
dc.contributor.AlternativeAuthor현택환-
dc.identifier.doi10.1126/sciadv.1501101-
dc.citation.journaltitleScience advances-
dc.identifier.scopusid2-s2.0-85004115513-
dc.citation.number1-
dc.citation.startpagee1501101-
dc.citation.volume2-
dc.identifier.urlhttp://advances.sciencemag.org/content/2/1/e1501101-
dc.identifier.rimsid38048-
dc.identifier.sci000376972900018-
dc.description.isOpenAccessY-
dc.contributor.affiliatedAuthorHyeon, Taeghwan-
dc.contributor.affiliatedAuthorKim, Dae-Hyeong-
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Chemical and Biological Engineering (화학생물공학부)Chemical Convergence for Energy and Environment (에너지환경 화학융합기술전공)Journal Papers (저널논문_에너지환경 화학융합기술전공)
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Chemical and Biological Engineering (화학생물공학부)Journal Papers (저널논문_화학생물공학부)
Files in This Item:
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse