Publications

Detailed Information

Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing

Cited 510 time in Web of Science Cited 526 time in Scopus
Authors

Choi, Moon Kee; Yang, Jiwoong; Kang, Kwanghun; Kim, Dong Chan; Choi, Changsoon; Park, Chaneui; Kim, Seok Joo; Chae, Sue In; Kim, Tae-Ho; Kim, Ji Hoon; Hyeon, TaeghwanKim, Dae-Hyeong

Issue Date
2015-05
Publisher
Nature Publishing Group
Citation
Nature Communications, Vol.6, p. 7149
Abstract
Deformable full-colour light-emitting diodes with ultrafine pixels are essential for wearable electronics, which requires the conformal integration on curvilinear surface as well as retina-like high-definition displays. However, there are remaining challenges in terms of polychromatic configuration, electroluminescence efficiency and/or multidirectional deformability. Here we present ultra-thin, wearable colloidal quantum dot light-emitting diode arrays utilizing the intaglio transfer printing technique, which allows the alignment of red-green-blue pixels with high resolutions up to 2,460 pixels per inch. This technique is readily scalable and adaptable for low-voltage-driven pixelated white quantum dot light-emitting diodes and electronic tattoos, showing the best electroluminescence performance (14,000 cd m(-2) at 7 V) among the wearable light-emitting diodes reported up to date. The device performance is stable on flat, curved and convoluted surfaces under mechanical deformations such as bending, crumpling and wrinkling. These deformable device arrays highlight new possibilities for integrating high-definition full-colour displays in wearable electronics.
ISSN
2041-1723
URI
https://hdl.handle.net/10371/164325
DOI
https://doi.org/10.1038/ncomms8149
Files in This Item:
Appears in Collections:

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area Chemistry, Materials Science

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share