Publications

Detailed Information

Silicon electronics on silk as a path to bioresorbable, implantable devices

DC Field Value Language
dc.contributor.authorKim, Dae-Hyeong-
dc.contributor.authorKim, Yun-Soung-
dc.contributor.authorAmsden, Jason-
dc.contributor.authorPanilaitis, Bruce-
dc.contributor.authorKaplan, David L.-
dc.contributor.authorOmenetto, Fiorenzo G.-
dc.contributor.authorZakin, Mitchell R.-
dc.contributor.authorRogers, John A.-
dc.date.accessioned2020-02-17T04:33:00Z-
dc.date.available2020-02-17T04:33:00Z-
dc.date.created2018-07-02-
dc.date.issued2009-09-
dc.identifier.citationApplied Physics Letters, Vol.95 No.13, p. 133701-
dc.identifier.issn0003-6951-
dc.identifier.other38434-
dc.identifier.urihttps://hdl.handle.net/10371/164349-
dc.description.abstractMany existing and envisioned classes of implantable biomedical devices require high performance electronics/sensors. An approach that avoids some of the longer term challenges in biocompatibility involves a construction in which some parts or all of the system resorbs in the body over time. This paper describes strategies for integrating single crystalline silicon electronics, where the silicon is in the form of nanomembranes, onto water soluble and biocompatible silk substrates. Electrical, bending, water dissolution, and animal toxicity studies suggest that this approach might provide many opportunities for future biomedical devices and clinical applications. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3238552]-
dc.language영어-
dc.publisherAmerican Institute of Physics-
dc.titleSilicon electronics on silk as a path to bioresorbable, implantable devices-
dc.typeArticle-
dc.identifier.doi10.1063/1.3238552-
dc.citation.journaltitleApplied Physics Letters-
dc.identifier.wosid000270458000089-
dc.identifier.scopusid2-s2.0-70349671461-
dc.citation.number13-
dc.citation.startpage133701-
dc.citation.volume95-
dc.identifier.sci000270458000089-
dc.description.isOpenAccessY-
dc.contributor.affiliatedAuthorKim, Dae-Hyeong-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusFIBROIN-
dc.subject.keywordPlusFILMS-
dc.subject.keywordPlusBIOMATERIAL-
dc.subject.keywordPlusDEGRADATION-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area Materials Science

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share