Publications

Detailed Information

Interface-Engineered Charge-Transport Properties in Benzenedithiol Molecular Electronic Junctions via Chemically p-Doped Graphene Electrodes

DC Field Value Language
dc.contributor.authorJang, Yeonsik-
dc.contributor.authorKwon, Sung-Joo-
dc.contributor.authorShin, Jaeho-
dc.contributor.authorJeong, Hyunhak-
dc.contributor.authorHwang, Wang-Taek-
dc.contributor.authorKim, Junwoo-
dc.contributor.authorKoo, Jeongmin-
dc.contributor.authorKo, Taeg Yeoung-
dc.contributor.authorRyu, Sunmin-
dc.contributor.authorWang, Gunuk-
dc.contributor.authorLee, Tae-Woo-
dc.contributor.authorLee, Tak Hee-
dc.date.accessioned2020-03-12T01:58:00Z-
dc.date.available2020-03-12T01:58:00Z-
dc.date.created2018-07-25-
dc.date.issued2017-12-
dc.identifier.citationACS Applied Materials and Interfaces, Vol.9 No.48, pp.42043-42049-
dc.identifier.issn1944-8244-
dc.identifier.other41106-
dc.identifier.urihttps://hdl.handle.net/10371/164466-
dc.description.abstractIn this study, we fabricated and characterized vertical molecular junctions consisting of self-assembled monolayers of benzenedithiol (BDT) with a p-doped multilayer graphene electrode. The p-type doping of a graphene film was performed by treating pristine graphene (work function of similar to 4.40 eV) with trifluoromethanesulfonic (TFMS) acid, producing a significantly increased work function (similar to 5.23 eV). The p-doped graphene-electrode molecular junctions statistically showed an order of magnitude higher current density and a lower charge injection barrier height than those of the pristine graphene-electrode molecular junctions, as a result of interface engineering. This enhancement is due to the increased work function of the TFMS-treated p-doped graphene electrode in the highest occupied molecular orbital-mediated tunneling molecular junctions. The validity of these results was proven by a theoretical analysis based on a coherent transport model that considers asymmetric couplings at the electrode-molecule interfaces.-
dc.language영어-
dc.publisherAmerican Chemical Society-
dc.titleInterface-Engineered Charge-Transport Properties in Benzenedithiol Molecular Electronic Junctions via Chemically p-Doped Graphene Electrodes-
dc.typeArticle-
dc.contributor.AlternativeAuthor이태우-
dc.contributor.AlternativeAuthor이탁희-
dc.identifier.doi10.1021/acsami.7b13156-
dc.citation.journaltitleACS Applied Materials and Interfaces-
dc.identifier.wosid000417669300044-
dc.identifier.scopusid2-s2.0-85037748299-
dc.citation.endpage42049-
dc.citation.number48-
dc.citation.startpage42043-
dc.citation.volume9-
dc.identifier.sci000417669300044-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorLee, Tae-Woo-
dc.contributor.affiliatedAuthorLee, Tak Hee-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusSELF-ASSEMBLED MONOLAYERS-
dc.subject.keywordPlusLIGHT-EMITTING-DIODES-
dc.subject.keywordPlusMETAL WORK FUNCTION-
dc.subject.keywordPlusFILMS-
dc.subject.keywordPlusRESISTANCE-
dc.subject.keywordPlusCONTACTS-
dc.subject.keywordPlusDEVICES-
dc.subject.keywordAuthormolecular electronics-
dc.subject.keywordAuthorinterface engineering-
dc.subject.keywordAuthorcharge transport-
dc.subject.keywordAuthorself-assembled monolayer-
dc.subject.keywordAuthorbenzenedithiol (BDT)-
dc.subject.keywordAuthorgraphene doping-
dc.subject.keywordAuthortransition voltage spectroscopy-
dc.subject.keywordAuthorcoherent transport model-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share