Publications

Detailed Information

Anisotropic Volume Expansion of Crystalline Silicon during Electrochemical Lithium Insertion: An Atomic Level Rationale

DC Field Value Language
dc.contributor.authorJung, Sung Chul-
dc.contributor.authorChoi, Jang Wook-
dc.contributor.authorHan, Young-Kyu-
dc.date.accessioned2020-03-16T10:59:00Z-
dc.date.available2020-03-16T10:59:00Z-
dc.date.created2018-07-02-
dc.date.issued2012-10-
dc.identifier.citationNano Letters, Vol.12 No.10, pp.5342-5347-
dc.identifier.issn1530-6984-
dc.identifier.other38513-
dc.identifier.urihttps://hdl.handle.net/10371/164559-
dc.description.abstractThe volume expansion of silicon is the most important feature for electrochemical operations of high capacity Si anodes in lithium ion batteries. Recently, the unexpected anisotropic volume expansion of Si during lithiation has been experimentally observed, but its atomic-level origin is still unclear. By employing first-principles molecular dynamics simulations, herein, we report that the interfacial energy at the phase boundary of amorphous LixSi/crystalline Si plays a very critical role in lithium diffusion and thus volume expansion. While the interface formation turns out to be favorable at x = 3.4 for all of the (100), (110), and (111) orientations, the interfacial energy for the (110) interface is the smallest, which is indeed linked to the preferential volume expansion along the (110) direction because the preferred (110) interface would promote lithiation behind the interface. Utilizing the structural characteristic of the Si(110) surface, local Li density at the (110) interface is especially high reaching Li5.5Si. Our atomic-level calculations enlighten the importance of the interfacial energy in the volume expansion of Si and offer an explanation for the previously unsolved perspective.-
dc.language영어-
dc.publisherAmerican Chemical Society-
dc.titleAnisotropic Volume Expansion of Crystalline Silicon during Electrochemical Lithium Insertion: An Atomic Level Rationale-
dc.typeArticle-
dc.contributor.AlternativeAuthor최장욱-
dc.identifier.doi10.1021/nl3027197-
dc.citation.journaltitleNano Letters-
dc.identifier.wosid000309615000045-
dc.identifier.scopusid2-s2.0-84867468825-
dc.citation.endpage5347-
dc.citation.number10-
dc.citation.startpage5342-
dc.citation.volume12-
dc.identifier.sci000309615000045-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorChoi, Jang Wook-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusION BATTERY ANODES-
dc.subject.keywordPlusAUGMENTED-WAVE METHOD-
dc.subject.keywordPlusMOLECULAR-DYNAMICS-
dc.subject.keywordPlusINITIAL LITHIATION-
dc.subject.keywordPlusHIGH-CAPACITY-
dc.subject.keywordPlusAB-INITIO-
dc.subject.keywordPlusNANOWIRES-
dc.subject.keywordPlusLI-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordPlusSI-
dc.subject.keywordAuthorLithium-ion battery-
dc.subject.keywordAuthorsilicon anode-
dc.subject.keywordAuthoranisotropic volume expansion-
dc.subject.keywordAuthordensity functional calculation-
dc.subject.keywordAuthorinterfacial energy-
dc.subject.keywordAuthormolecular dynamics-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area Physics, Materials Science

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share