Publications

Detailed Information

Intercalated water and organic molecules for electrode materials of rechargeable batteries

DC Field Value Language
dc.contributor.authorLee, Hyeon Jeong-
dc.contributor.authorShin, Jaeho-
dc.contributor.authorChoi, Jang Wook-
dc.date.accessioned2020-03-16T11:07:20Z-
dc.date.available2020-03-16T11:07:20Z-
dc.date.created2019-07-01-
dc.date.issued2018-10-
dc.identifier.citationAdvanced Materials, Vol.30 No.42, p. 1705851-
dc.identifier.issn0935-9648-
dc.identifier.other77056-
dc.identifier.urihttps://hdl.handle.net/10371/164614-
dc.description.abstractThe intrinsic limitations of lithium-ion batteries (LIBs) with regard to safety, cost, and the availability of raw materials have promoted research on so-called "post-LIBs". The recent intense research of post-LIBs provides an invaluable lesson that existing electrode materials used in LIBs may not perform as well in post-LIBs, calling for new material designs compliant with emerging batteries based on new chemistries. One promising approach in this direction is the development of materials with intercalated water or organic molecules, as these materials demonstrate superior electrochemical performance in emerging battery systems. The enlarged ionic channel dimensions and effective shielding of the electrostatic interaction between carrier ions and the lattice host are the origins of the observed electrochemical performance. Moreover, these intercalants serve as interlayer pillars to sustain the framework for prolonged cycles. Representative examples of such intercalated materials applied to batteries based on Li+, Na+, Mg2+, and Zn2+ ions and supercapacitors are considered, along with their impact in materials research.-
dc.language영어-
dc.publisherWILEY-VCH Verlag GmbH & Co. KGaA, Weinheim-
dc.titleIntercalated water and organic molecules for electrode materials of rechargeable batteries-
dc.typeArticle-
dc.contributor.AlternativeAuthor최장욱-
dc.identifier.doi10.1002/adma.201705851-
dc.citation.journaltitleAdvanced Materials-
dc.identifier.wosid000447377200018-
dc.identifier.scopusid2-s2.0-85044303522-
dc.citation.number42-
dc.citation.startpage1705851-
dc.citation.volume30-
dc.identifier.sci000447377200018-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorChoi, Jang Wook-
dc.type.docTypeReview-
dc.description.journalClass1-
dc.subject.keywordPlusSODIUM-ION BATTERIES-
dc.subject.keywordPlusELECTROCHEMICAL ENERGY-STORAGE-
dc.subject.keywordPlusLITHIUM METAL ANODE-
dc.subject.keywordPlusHIGH-CAPACITY ANODE-
dc.subject.keywordPlusCATHODE MATERIALS-
dc.subject.keywordPlusCRYSTAL WATER-
dc.subject.keywordPlusMAGNESIUM BATTERIES-
dc.subject.keywordPlusCONVERSION MECHANISM-
dc.subject.keywordPlusNATURAL GRAPHITE-
dc.subject.keywordPlusHIGH-PERFORMANCE-
dc.subject.keywordAuthorhydrated compounds-
dc.subject.keywordAuthormagnesium-ion batteries-
dc.subject.keywordAuthororganic-molecule intercalants-
dc.subject.keywordAuthorsodium-ion batteries-
dc.subject.keywordAuthorsupercapacitors-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area Carbon nanotube, Graphene, Lithium-ion battery, Lithium-sulfur battery, Silicon anode

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share