Atomic-scale observation of LiFePO4 and LiCoO2 dissolution behavior in aqueous solutions

Cited 41 time in Web of Science Cited 40 time in Scopus

Byeon, Pilgyu; Bae, Hyung Bin; Chung, Hee-Suk; Lee, Sang-Gil; Kim, Jin-Gyu; Lee, Hyeon Jeong; Choi, Jang Wook; Chung, Sung-Yoon

Issue Date
John Wiley & Sons Ltd.
Advanced Functional Materials, Vol.28 No.45, p. 1804564
Understanding the atomic structure variation at the surface of electrode materials in contact with an electrolyte is an essential step toward achieving better electrochemical performance of rechargeable cells. Different types of water-based aqueous solutions are suggested as alternative electrolytes to the currently used flammable organic solvents in Li-ion batteries. However, most research on aqueous rechargeable Li-ion cells has largely focused on the synthetic processing of materials and resulting electrochemical properties rather than in-depth atomic-level observation on the electrode surface where the initial charge transfer and the (de)intercalation reaction take place. By using LiFePO4 and LiCoO2 single crystals, serious P and Co dissolution from LiFePO4 and LiCoO2 into aqueous solutions without any electrochemical cycling is identified. Furthermore, both strong temperature-dependent behavior of P dissolution in LiFePO4 and very unusual occupancy of Co in the tetrahedral interstices in LiCoO2 are directly demonstrated via atomic-scale (scanning) transmission electron microscopy. Ab initio density functional theory calculations also reveal that this tetrahedral-site occupation is stabilized when cation vacancies are simultaneously present in both Li and Co sites. The findings in this work emphasize the significance of direct observation on the atomic structure variation and local stability of the cathode materials.
Files in This Item:
There are no files associated with this item.
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Chemical and Biological Engineering (화학생물공학부)Journal Papers (저널논문_화학생물공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.