Browse

5L-Scale Magnesio-Milling Reduction of Nanostructured SiO2 for High Capacity Silicon Anodes in Lithium-Ion Batteries

Cited 38 time in Web of Science Cited 38 time in Scopus
Authors
Cho, Won Chul; Kim, Hye Jin; Lee, Hae In; Seo, Myung Won; Ra, Ho Won; Yoon, Sang Jun; Mun, Tae Young; Kim, Yong Ku; Kim, Jae Ho; Kim, Bo Hwa; Kook, Jin Woo; Yoo, Chung-Yul; Lee, Jae Goo; Choi, Jang Wook
Issue Date
2016-11
Citation
Nano Letters, Vol.16 No.11, pp.7261-7269
Keywords
attrition millignition timelithium-ion batterymagnesio-milling reductionsilicon anode
Abstract
Nanostructured silicon (Si) is useful in many applications and has typically been synthesized by bottom-up colloid-based solution processes or top-down gas phase reactions at high temperatures. These methods, however, suffer from toxic precursors, low yields, and impractical processing conditions (i.e., high pressure). The magnesiothermic reduction of silicon oxide (SiO2) has also been introduced as an alternative method. Here, we demonstrate the reduction of SiO2 by a simple milling process using a lab scale planetary-ball mill and industry-scale attrition-mill. Moreover, an ignition point where the reduction begins was consistently observed for the milling processes, which could be used to accurately monitor and control the reaction. The complete conversion of rice husk SiO2 to high purity Si was demonstrated, taking advantage of the rice husk's uniform nanoporosity and global availability, using a 5L-scale attrition-mill. The resulting porous Si showed excellent performance as a Li-ion battery anode, retaining 82.8% of the initial capacity of 1466 mAh g(-1) after 200 cycles.
ISSN
1530-6984
URI
http://hdl.handle.net/10371/164677
DOI
https://doi.org/10.1021/acs.nanolett.6b03762
Files in This Item:
There are no files associated with this item.
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Chemical and Biological Engineering (화학생물공학부)Journal Papers (저널논문_화학생물공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse