Browse

Role of Ordered Ni Atoms in Li Layers for Li-Rich Layered Cathode Materials

Cited 20 time in Web of Science Cited 22 time in Scopus
Authors
Yang, Moon Young; Kim, Sangryun; Kim, Kyungsu; Cho, Woosuk; Choi, Jang Wook; Nam, Yoon Sung
Issue Date
2017-09
Citation
Advanced Functional Materials, Vol.27 No.35, p. 1700982
Keywords
first-principles calculationsLi-rich layered oxidesoxygen lossphase transitionsurface modification
Abstract
Li-rich layered oxide materials are promising candidates for high-energy Li-ion batteries. They show high capacities of over 200 mAh g(-1) with the additional occupation of Li in their transition metal layers; however, the poor cycle performance induced by an irreversible phase transition limits their use in practical applications. In recent work, an atomic-scale modified surface, in which Ni is ordered at 2c sites in the Li layers, significantly improves the performance in terms of reversible capacity and cycling stability. The role of the incorporated Ni on this performance, however, is not yet clearly understood. Here, the effects of the ordered Ni on Li battery performance are presented, based on first-principles calculations and experimental observations. The Ni substitution suppresses the oxygen loss by moderating the oxidation of oxygen ions during the delithiation process and forms bonds with adjacent oxygen after the first deintercalation of Li ions. These Ni-O bonds contribute to the formation of a solid surface, resulting in the improved cycling stability. Moreover, the multivalent Ni suppresses Mn migration to the Li-sites that causes the undesired phase transition. These findings from theoretical calculations and experimental observations provide insights to enhance the electrochemical performance of Li-rich layered oxides.
ISSN
1616-301X
URI
https://hdl.handle.net/10371/164712
DOI
https://doi.org/10.1002/adfm.201700982
Files in This Item:
There are no files associated with this item.
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Chemical and Biological Engineering (화학생물공학부)Journal Papers (저널논문_화학생물공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse