Browse

Suppression of voltage decay through manganese deactivation and nickel redox buffering in high-energy layered lithium-rich electrodes

Cited 25 time in Web of Science Cited 27 time in Scopus
Authors
Ku, Kyojin; Hong, Jihyun; Kim, Hyungsub; Park, Hyeokjun; Seong, Won Mo; Jung, Sung-Kyun; Yoon, Gabin; Park, Kyu-Young; Kim, Haegyeom; Kang, Kisuk
Issue Date
2018-07
Citation
Advanced Energy Materials, Vol.8 No.21, p. 1800606
Keywords
layered lithium-rich nickel manganese oxidesMn deactivationphase transformationredox buffersvoltage decay
Abstract
Cobalt-free layered lithium-rich nickel manganese oxides, Li[LixNiyMn1-x-y]O-2 (LLNMO), are promising positive electrode materials for lithium rechargeable batteries because of their high energy density and low materials cost. However, substantial voltage decay is inevitable upon electrochemical cycling, which makes this class of materials less practical. It has been proposed that undesirable voltage decay is linked to irreversible structural rearrangement involving irreversible oxygen loss and cation migration. Herein, the authors demonstrate that the voltage decay of the electrode is correlated to Mn4+/Mn3+ redox activation and subsequent cation disordering, which can be remarkably suppressed via simple compositional tuning to induce the formation of Ni3+ in the pristine material. By implementing our new strategy, the Mn4+/Mn3+ reduction is subdued by an alternative redox reaction involving the use of pristine Ni3+ as a redox buffer, which has been designed to be widened from Ni3+/Ni4+ to Ni2+/Ni4+, without compensation for the capacity in principle. Negligible change in the voltage profile of modified LLNMO is observed upon extended cycling, and manganese migration into the lithium layer is significantly suppressed. Based on these findings, we propose a general strategy to suppress the voltage decay of Mn-containing lithium-rich oxides to achieve long-lasting high energy density from this class of materials.
ISSN
1614-6832
URI
http://hdl.handle.net/10371/164993
DOI
https://doi.org/10.1002/aenm.201800606
Files in This Item:
There are no files associated with this item.
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Material Science and Engineering (재료공학부) Journal Papers (저널논문_재료공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse