Detailed Information

A general strategy for site-directed enzyme immobilization by using NiO nanoparticle decorated mesoporous silica

Cited 30 time in Web of Science Cited 32 time in Scopus

Ling, Daishun; Gao, Liqian; Wang, Jianpeng; Shokouhimehr, Mohammadreza; Liu, Jiahui; Yu, Yongsheng; Hackett, Michael J.; So, Pui-Kin; Zheng, Bo; Yao, Zhongping; Xia, Jiang; Hyeon, Taeghwan

Issue Date
John Wiley & Sons Ltd.
Chemistry - A European Journal, Vol.20 No.26, pp.7916-7921
Mesoporous materials have recently gained much attention owing to their large surface area, narrow pore size distribution, and superior pore structure. These materials have been demonstrated as excellent solid supports for immobilization of a variety of proteins and enzymes for their potential applications as biocatalysts in the chemical and pharmaceutical industries. However, the lack of efficient and reproducible methods for immobilization has limited the activity and recyclability of these biocatalysts. Furthermore, the biocatalysts are usually not robust owing to their rapid denaturation in bulk solvents. To solve these problems, we designed a novel hybrid material system, mesoporous silica immobilized with NiO nanoparticles (SBA-NiO), wherein enzyme immobilization is directed to specific sites on the pore surface of the material. This yielded the biocatalytic species with higher activity than free enzyme in solution. These biocatalytic species are recyclable with minimal loss of activity after several cycles, demonstrating an advantage over free enzymes.
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Engineering
  • School of Chemical and Biological Engineering
Research Area Chemistry, Materials Science


Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.