High-resolution three-photon biomedical imaging using doped ZnS nanocrystals

Cited 205 time in Web of Science Cited 232 time in Scopus

Yu, Jung Ho; Kwon, Seung-Hae; Petrasek, Zdenek; Park, Ok Kyu; Jun, Samuel Woojoo; Shin, Kwangsoo; Choi, Moonkee; Park, Yong Il; Park, Kyeongsoon; Na, Hyon Bin; Lee, Nohyun; Lee, Dong Won; Kim, Jeong Hyun; Schwille, Petra; Hyeon, Taeghwan

Issue Date
Nature Publishing Group
Nature Materials, Vol.12 No.4, pp.359-366
Three-photon excitation is a process that occurs when three photons are simultaneously absorbed within a luminophore for photo-excitation through virtual states. Although the imaging application of this process was proposed decades ago, three-photon biomedical imaging has not been realized yet owing to its intrinsic low quantum efficiency. We herein report on high-resolution in vitro and in vivo imaging by combining three-photon excitation of ZnS nanocrystals and visible emission from Mn2+ dopants. The large three-photon cross-section of the nanocrystals enabled targeted cellular imaging under high spatial resolution, approaching the theoretical limit of three-photon excitation. Owing to the enhanced Stokes shift achieved through nanocrystal doping, the three-photon process was successfully applied to high-resolution in vivo tumour-targeted imaging. Furthermore, the biocompatibility of ZnS nanocrystals offers great potential for clinical applications of three-photon imaging.
Files in This Item:
There are no files associated with this item.
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Chemical and Biological Engineering (화학생물공학부)Journal Papers (저널논문_화학생물공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.