Browse

Water-dispersible ferrimagnetic iron oxide nanocubes with extremely high r 2 relaxivity for highly sensitive in vivo MRI of tumors

Cited 228 time in Web of Science Cited 238 time in Scopus
Issue Date
2012-06
Citation
Nano Letters, Vol.12 No.6, pp.3127-3131
Keywords
Nanoparticlenanomedicineiron oxidemagnetic resonance imaging contrast agentcolloidal stability
Abstract
The theoretically predicted maximum r(2) relaxivity of iron oxide nanoparticles was achieved by optimizing the overall size of ferrimagnetic iron oxide nanocubes. Uniform-sized iron oxide nanocubes with an edge length of 22 nm, encapsulated with PEG-phospholipids (WFION), exhibited high colloidal stability in aqueous media. In addition, WFIONs are biocompatible and did not affect cell viability at concentrations up to 0.75 mg Fe/ml. Owing to the enhanced colloidal stability and the high r(2) relaxivity (761 mM(-1) s(-1)), it was possible to successfully perform in vivo MR imaging of tumors by intravenous injection of 22-nm-sized WFIONs, using a clinical 3-T MR scanner.
ISSN
1530-6984
URI
https://hdl.handle.net/10371/166201
DOI
https://doi.org/10.1021/nl3010308
Files in This Item:
There are no files associated with this item.
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Chemical and Biological Engineering (화학생물공학부)Journal Papers (저널논문_화학생물공학부)
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Chemical and Biological Engineering (화학생물공학부)Chemical Convergence for Energy and Environment (에너지환경 화학융합기술전공)Journal Papers (저널논문_에너지환경 화학융합기술전공)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse