Browse

Design of a Low Power and High Performance MAC for CNNs
CNN을 위한 Low-Power 와 High Performance MAC 설계

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors
백승완
Advisor
이혁재
Issue Date
2020
Publisher
서울대학교 대학원
Description
학위논문(석사)--서울대학교 대학원 :공학전문대학원 응용공학과,2020. 2. 이혁재.
Abstract
최신 Convolution Neural Network (CNN) 의 동향을 보면 지난 과거와 비교하여 인식과 분류의 정확도를 높이기 위해 더 많은 Convolution layer 를 가지고 있는 것이 특징이다 그 동안 높은 정확도를 유지하면서 연산량을 줄이기 위해서는 Network 의 크기 그 자체를 줄이려는 시도들도 있었고 하나의 Network 에서 Approximate Computing 방법을 이용하여 줄이려는 시도들도 있었다 본 논문에서는 새로운 4 2 Compressor 를 고안하여 이를 기존에 잘 알려진 Baugh Wooley 나 Booth 곱셈기에 적용하는 Approximate computing 방법을 제안하였다 . Convolution layer 는 곱셈과 그 결과 값을 누적으로 더하는 동작 으로 이루어져 있고 이를 MAC 이라고 한다 본 논문에서 제안하는 Approximate Compressor 가 적용된 Multiplier 를 MAC 에 적용하고 , FPGA 의 Resource 의 효율적인 배분을 위하여 MAC 을 수정하였다 . 그 결과 기존의 정확한 Compressor 와 비교 시에 Delay 와 Power 측면에서 각각 50%, 68% 의 향상이 있었다 뿐만 아니라 MAC 에 적용하여 비교하였을 시에는 APP 와 ADP 기준으로 각각 10% 와 11% 감소하였다 . 최종적으로 MAC 을 VDSR 하드웨어에 적용하여 Super Resolution 된 이미지를 검증하였다.
State of arts Conv olutional Neural Network (CNN) has more convolution layers than those in the past to increase the accuracy of classification and super resolution. Many researches have focused on reducing network size to save the computational cost with keeping high accura cy, and studied to optimize a convolution layer itself to reduce computational cost. This paper proposes approximate computing using novel 4 2 compressors and applies on Baugh Wooley and Booth multiplier. Convolution layers in CNNs consist of multiply and accumulate (MAC). We applied the approximate multiplier into the modified MAC for high efficient Field Programmable Gate Array (FPGA) resource utilization. As results, the propos ed approximate compressors show 11.5 % and 29.6 % less area delay product (ADP and area power product (APP) respectively than the previous work design. Finally, the modified MAC is implemented VDSR hardware to compa re output images with reference and resulting 37.6dB with PACD 2 on Booth multiplier
Language
eng
URI
http://dcollection.snu.ac.kr/common/orgView/000000160550
Files in This Item:
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Graduate School of Engineering Practice (공학전문대학원)Theses (Master's Degree_공학전문대학원)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse