Publications

Detailed Information

DEVELOPTMENT OF HYDROGEL-SOLID HYBRIDS FOR ELECTRO-MICROFLUIDICS AND SINGLE CELL ANALYSIS

DC Field Value Language
dc.contributor.advisor권성훈-
dc.contributor.author배상욱-
dc.date.accessioned2020-10-13T03:02:17Z-
dc.date.available2020-10-13T03:02:17Z-
dc.date.issued2020-
dc.identifier.other000000163191-
dc.identifier.urihttps://hdl.handle.net/10371/169421-
dc.identifier.urihttp://dcollection.snu.ac.kr/common/orgView/000000163191ko_KR
dc.description학위논문 (박사) -- 서울대학교 대학원 : 공과대학 협동과정 바이오엔지니어링전공, 2020. 8. 권성훈.-
dc.description.abstractAgarose and other noncovalent hydrogels have good biocompatibility but their applications were restricted since they tend to have low interfacial bonding strength with other polymers or solids. Previously introduced noncovalent hydrogel-to-solid fixation strategies relied heavily on mechanical clamping which is a temporary approach and difficult to apply to kinetic parts or morphologically non-trivial adhesions. Here, we introduce a facile method that increased interfacial bonding strength of agarose hydrogel against solids via an interface-toughening hydrogel. The method showed applicability to several other noncovlanet hydrogels as well, including gelatin, alginate, agar, and chitosan. The bonding method requires no mechanical clamping, liquid glue or bulk modification of the noncovalent hydrogels polymer backbone. It is also compatible with forming micropatterns within the bonding interface. With this new bonding technique, we were able to fabricate various noncovalent hydrogel-solid integrated structures with novel functionalities for in vitro assay, soft robotics and biologically inspired systems.-
dc.description.abstract아가로스를 비롯한 noncovalent 하이드로겔들은 biocompatibility가 좋은 반면에 다른 고체 표면과의 접착력이 약해 그 활용성이 낮은 편이었다. 기존의 noncovalent 하이드로겔 접착 방법은 주로 기계적 고정방법에 많이 의존했는데 이는 일시적인 접착일 뿐이고, 동적 부품이나 복잡한 표면에는 적용이 어려웠다. 본 논문에선 접착면 toughness 증강을 도모하는, 그리고 활용성, 범용성이 좋은 하이드로겔 접착방법을 제시한다. 본 접착방법은 gelatin, alginate, agar, 그리고 chitosan등의 noncovalent hydrogel에 대해 적용 가능하다는 것을 보여줬다. 본 방법은 기계적 고정이 전혀 필요 없고, 액상 접착제나 하이드로겔 polymer backbone 수정을 요구하지 않는다. 또한 접착표면상에 미세구조들을 유지할 수 있다. 이 접착방법을 사용해서 전기미세유체, 단일세포전사체분석 등의 활용 예시들을 보여줬다. 본 접착방법은 이 외에도 in vitro 어세이, 소프트 로보틱스, 생체모방 등의 분야에 활용 가능할 것으로 예상한다.-
dc.description.tableofcontentsChapter 1 1
Chapter 2 6
2.1 Fabrication of hybrid hydrogel films 7
2.2 Fabrication of hybrid hydrogel and noncovalent hydrogel double layer structure 8
2.3 Performing various hydrogel-to-hybrid gel bonding 8
2.4 Agarose hydrogel to tough hydrogel bonding procedure. 9
2.5 Preparing solids and elastomers to bond with hybrid gels. 10
Chapter 3 11
3.1 FTIR measurement of imine bond formation 12
3.1.1 Sample preparation for FTIR measurement 12
3.1.2 FTIR Measurement result 12
3.2 13C-NMR chemical shift measurement 15
3.2.1 Sample preparation for NMR measurement 15
3.2.2 NMR measurement result 16
3.3 SEM/EDS measurement of monomer diffusion layer 19
3.3.1 Sample preparation for SEM measurement 19
3.3.2 SEM measurement result 19
3.3.3 EDS measurement result 21
Chapter 4 25
4.1 Bonding strength measurement 26
4.1.1 The effect of monomer concentration 26
4.1.2 The effect of agarose chain aldehyde modification 30
4.1.3 The effect of monomer diffusion 31
4.1.4 Fracture energy analysis 33
4.2 Noncovalent hydrogel to solid bonding 35
4.2.1 Noncovalent hydrogel to solid surface bonding 35
4.2.2 Noncovalent hydrogel to elastomer surface bonding 37
4.2.3 Noncovalent hydrogel to tough hydrogel bonding 41
Chapter 5 45
5.1 Zig-free hydrogel microfluidic system 46
5.2 Electrophoretic oligonucleotide retrieval system 52
5.3 Discussion 57
Chapter 6 59
6.1 Introduction of the field and the proposed approach 60
6.2 Device design 62
6.2.1 Optimization of cell assembly protocol 66
6.2.2 Optimization of electrophoretic mRNA capture protocol 70
6.2.3 Crosslinking mRNA capturing probe onto magnetic microparticles 74
6.2.4 Optimizing RT-PCR protocol for single cell or small number of cells using mouth pipetting 75
6.2.5 Critical limitation of the approach 80
Chapter 7 81
7.1 Single cell electrophoresis protocol optimization 82
7.1.1 Optimization of barcoded mRNA-capturing microparticle synthesis 82
7.1.2 Optimization of cell assembly and bead assembly 87
7.1.3 Optimization of electrophoretic mRNA capture protocol 93
7.2 Single cell RNA retrieval demonstration 96
7.2.1 Single cell mRNA retrieval test 96
7.2.2 Bead harvest and RT-PCR 105
7.2.3 Validation using Sanger sequencing 107
7.2.4 Discussion 110
Chapter 8 : Summary 115
Bibliography 117
Abstract(국문초록) 120
-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjectNoncovalent Hydrogel,interpenetrating network,Electro-microfluidics-
dc.subject.ddc660.6-
dc.titleDEVELOPTMENT OF HYDROGEL-SOLID HYBRIDS FOR ELECTRO-MICROFLUIDICS AND SINGLE CELL ANALYSIS-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.department공과대학 협동과정 바이오엔지니어링전공-
dc.description.degreeDoctor-
dc.date.awarded2020-08-
dc.identifier.uciI804:11032-000000163191-
dc.identifier.holdings000000000043▲000000000048▲000000163191▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share