Publications

Detailed Information

Hydrogel-Based Skin Patch for Promoting Wound Repair and Transdermal Drug Delivery : 상처 치료 및 경피 약물전달을 향상시키기 위한 하이드로겔 기반 피부 패치

DC Field Value Language
dc.contributor.advisorNathaniel Suk-Yeon Hwang-
dc.contributor.author안영현-
dc.date.accessioned2020-10-13T03:03:27Z-
dc.date.available2020-10-13T03:03:27Z-
dc.date.issued2020-
dc.identifier.other000000161377-
dc.identifier.urihttps://hdl.handle.net/10371/169449-
dc.identifier.urihttp://dcollection.snu.ac.kr/common/orgView/000000161377ko_KR
dc.description학위논문 (박사) -- 서울대학교 대학원 : 공과대학 화학생물공학부, 2020. 8. Nathaniel Suk-Yeon Hwang.-
dc.description.abstractHydrogel, three-dimensional polymeric networks, can hold lots of water and continuously provide the concentration gradient of drugs, it has been widely used as a skin patch for wound repair and transdermal drug delivery as a drug reservoir. However, when using hydrogels only, they implement passive roles without external stimulation. For this reason, a functional substrate can be utilized not only to facilitate the handling of the hydrogel with fabricating the hydrogel patch but also to provide some stimulation to the hydrogel for enhancing drug delivery efficacy. In this thesis, the approaches for promoting wound repair and transdermal drug delivery using hydrogel-based skin patches were studied.
In chapter one and chapter two, the general introduction and scientific backgrounds about the strategies were addressed.
In chapter three, a hydrogel-functionalized Janus membrane was developed for delivering a protein drug, recombinant human vascular endothelial growth factor (rhVEGF), into the skin wounds. A hydrophobic fluoropolymer was uniformly coated onto macroporous polyester membrane through initiated chemical vapor deposition (iCVD) process, followed by being cleaved, resulting in the carboxylic acid residue. This carboxylic acid residue was then further functionalized with gelatin methacrylate (GelMA)-based photo-cross-linkable hydrogel for moisture retention and growth factor release. When applied to full-thickness dorsal skin defect model, functionalized hydrogel allowed moisture retention, and hydrophobic surface prevented exudate leaks via water repellence.
In chapter four, an iontophoretic hydrogel patch for transdermal drug delivery was developed. This system consists of a portable and disposable reverse electrodialysis (RED) battery that generates electric power for iontophoresis through the ionic exchange. In addition, in order to provide a drug reservoir to the RED-driven iontophoretic system, electroconductive hydrogel composed of polypyrrole-incorporated poly(vinyl alcohol) (PYP) hydrogels were used. PYP hydrogel facilitated electron transfer from the RED battery. For the effective drug delivery, electrically mobile drug nanocarriers (DNs) were prepared. Both the RED-driven iontophoresis and PYP hydrogel accelerated the mobility of electrically mobile DNs. Remarkably, applying the RED-driven iontophoresis of rosiglitazone loaded DNs resulted in an effective anti-obese condition displaying decreased bodyweight, reduced glucose level, and increased conversion of white adipose tissues to brown adipose tissues in vivo.
In chapter five, the critical analysis of current technologies and future perspectives on the transdermal drug delivery systems were discussed.
This thesis described the application of hydrogel-based skin patch systems. The innovative hydrogel-functionalized Janus membrane and the PYP/RED system with electrically mobile DNs may offer a new perspective on the wound repair and transdermal drug delivery using a hydrogel-based skin patch.
-
dc.description.abstract하이드로겔은 다량의 수분을 흡수하고 저장할 수 있는 친수성 고분자의 3차원 구조체로서 세포와 상호작용할 수 있고 지속적으로 약물의 농도구배를 제공할 수 있다. 이로 인해 하이드로겔은 피부재생 혹은 경피 약물전달을 위한 피부 패치 제작에 광범위하게 사용되고 있다. 그러나, 하이드로겔 자체만으로는 수동적인 역할에 그치는 문제점이 있다. 기능적인 기판과 하이드로겔의 하이브리드 형태의 패치는 하이드로겔의 적용을 용이하게할 뿐 아니라 약물전달 효율을 향상시키기 위한 외부자극을 제공하기 위한 중간매질로서 사용되어져 왔다. 본 논문은 피부 상처 치료 및 경피 약물전달을 촉진하기 위한 하이드로겔 기반의 능동형 피부 패치 연구에 대한 것이다.
제 1장과 제 2장에서는 일반적인 서론 및 과학적 배경에 대해 서술하였다.
제 3장에서는 상처부위에의 혈관성장인자 전달을 위한 하이드로겔로 기능화된 양면성 기판을 개발하였다. 일반적인 드레싱 재료를 손쉽게 기능화하기 위한 화학기상증착법을 사용하여 소수성 불소고분자인 PHFDMA를 증착 및 중합하고 에스터 기의 가수분해를 통해 카복실기를 드러나게 함으로써 양면성 드레싱을 제작할 수 있었다. 카복실기는 자외선 광중합이 가능한 젤라틴 메타크릴레이트 (GelMA)와 EDC/NHS 반응을 거쳐 화학적으로 반응하고 하이드로겔로 제작해 고정했다. GelMA 하이드로겔은 성장인자를 방출할 수 있고 수분을 함유하여 상처재생을 위해 사용되었다. 이렇게 제작된 GelMA 하이드로겔이 고정화된 양면성 폴리에스터 드레싱을 쥐 피부 전층 창상 모델이 적용하였을 때, 하이드로겔에 의해 상처의 습윤한 환경은 유지되었고 양면성 드레싱에 의해 삼출액이 새어나가는 것을 방지할 수 있었다.
제 4장에서는 경피약물전달을 위한 하이드로겔 기반 이온영동패치를 개발하였다. 이 시스템은 휴대가능하고 일회성인 역삼투전위(RED) 배터리를 전원장치로 하여 약물 저장 및 전극으로 사용하기 위해 전기전도성 고분자인 폴리피롤(Ppy)이 폴리비닐알코올(PVA)에 도입된 하이드로겔 (PYP)을 사용하였다. 또한, 효과적인 약물전달을 위해, 전기유동성을 갖는 약물 나노입자(drug nanocarriers, DNs)를 제작하였다. RED에 의한 이온영동과 PYP 하이드로겔은 DNs의 피부전달을 촉진시켰다. 특히, 나노입자의 표면전하를 조정함을 통해 이온영동법에 의한 전기적 반발력을 극대화하였다. PYP/RED 패치는 DNs을 효과적으로 피부 내로 흡수시켰으며 마우스 모델에서 국소적인 적용을 통해 전신적인 비만 치료효과를 나타내었다.
제 5장에서는 기술에 대한 비평적 분석과 추구할 방향을 논의했다. 종합적으로 본 논문은 양면성 드레싱 기반의 하이드로겔 패치를 통한 피부상처 치료에 대한 새로운 접근법을 제시하였고 전기전도성 재료를 이용한 이온영동패치를 통해 향후 다양한 치료물질의 비침습적인 경피 약물전달을 위한 유용한 플랫폼 기술을 제시하였다.
-
dc.description.tableofcontentsCHAPTER ONE: Introduction 1
1.1 Objective and overview of the thesis 1
1.2 Organization of the thesis 2
CHAPTER TWO: The Scientific Background and Research Progress 4
2.1 Hydrogel-based skin patch 4
2.1.1 Hydrogels 4
2.1.2 Current limitations of hydrogel 5
2.1.3 Substrate-mediated functionalization of the hydrogels for wound repair and transdermal drug delivery 7
2.2 Transdermal drug delivery 12
2.3 Barrier functions of the skin 18
2.3.1 Structure of the stratum corneum (SC): The physical barrier of the skin 18
2.3.2 Immune responses: the immunological barrier of the skin, and its pros and cons 22
2.4 Chemical adjuvants (CAs) for the transdermal drug delivery 25
2.4.1 Chemical penetration enhancers (CPEs) 25
2.4.2 Hyaluronic acid (HA)-based adjuvants 27
2.4.3 Skin penetrating peptides 28
2.4.4 Nanovesicles 31
2.4.5 Microemulsion 40
2.4.6 Nanoparticles 42
2.5 Noninvasive physical penetration enhancers (PPEs) for the transdermal drug delivery 45
2.5.1 Iontophoresis 47
2.5.2 Electroporation 51
2.5.3 Sonophoresis 54
CHAPTER THREE: Hydrogel-Based Janus Patch for Wound Repair 57
3.1 Introduction 57
3.2 Materials and methods 63
3.2.1 Janus membrane preparation 63
3.2.2 Physical properties of Janus membrane 64
3.2.3 Antibacterial analysis 64
3.2.4 In vitro cell culture 65
3.2.5 Synthesis of methacrylate-incorporated gelatin (GelMA) hydrogel 66
3.2.6 Characterization of the hydrogel 67
3.2.7 Janus membrane functionalization with GelMA hydrogel 68
3.2.8 In vitro biocompatibility 69
3.2.9 In vitro cell proliferation 70
3.2.10 Release kinetic analysis 71
3.2.11 HUVECs adhesion on GelMA hydrogel and biofunctionality of rhVEGF 71
3.2.12 In vivo wound healing analysis 72
3.2.13 Histological analysis and vessel formation in vivo 73
3.2.14 Statistical analysis 73
3.3 Results and discussion 74
3.3.1 Preparation of Janus membrane and characterization 74
3.3.2 Antibacterial ability and biocompatibility of Janus membrane 79
3.3.3 Hydrogel characterization for optimal growth factor release 85
3.3.4 In vitro biocompatibility and biofunctionality of rhVEGF-incorporated GelMA hydrogel 88
3.3.5 GelMA hydrogel immobilization onto Janus membrane 91
3.3.6 In vivo wound healing application 95
3.4 Summary 102
CHAPTER FOUR: Hydrogel-Based Iontophoretic Patch for Transdermal Drug Delivery 103
4.1 Introduction 103
4.2 Materials and methods 108
4.2.1 Materials 108
4.2.2 Preparation and characterization of drug nanocarriers (DNs) 108
4.2.3 Preparation of carbon-printed cotton fabric 110
4.2.4 Fabrication of electrically conductive hydrogels 110
4.2.5 The mechanical property of the hydrogels 111
4.2.6 Raman spectroscopy 111
4.2.7 Thermal properties of the hydrogels 112
4.2.8 Electrical properties of the hydrogels 112
4.2.9 Electrochemical impedance spectroscopy (EIS) 113
4.2.10 Scanning electron microscopy (SEM) 113
4.2.11 Swelling behavior of the hydrogels 114
4.2.12 Preparation of the RED system 114
4.2.13 Hydrogel adhesive properties 115
4.2.14 Preparation and voltage profile measurement of the RED-coupled hydrogel patches 116
4.2.15 Preparation of DNs-loaded hydrogels 116
4.2.16 Release behavior of the DNs 116
4.2.17 Transdermal delivery of electrically mobile DNs 117
4.2.18 Cryo-section of the tissue and quantification of fluorescence 118
4.2.19 Transdermal delivery of Fluc-DNs 119
4.2.20 Preparation of diet-induced obese mice 120
4.2.21 Topical delivery of Rosi-DNs with RED-driven iontophoresis 121
4.2.22 Histological analysis 121
4.2.23 Dermal toxicity test 122
4.2.24 Statistical Analysis 123
4.3 Results and discussion 124
4.3.1 Fabrication and characterization of electrically conductive PVA-Ppy hydrogels. 124
4.3.2 Modulation of electrical properties of PVA-Ppy hydrogels 132
4.3.3 Construction of PYP hydrogel and coupling with the RED battery system 136
4.3.4 Preparation of electrically mobile drug nanocarrier (DNs) and DNs-loaded hydrogels 141
4.3.5 Validation of the transdermal delivery efficacy of the system 144
4.3.6 Transdermal delivery of therapeutic Flu-DNs 149
4.3.7 Therapeutic efficacy of Rosi-DNs with PYP/RED system 152
4.4 Summary 159
CHAPTER FIVE: Concluding Remarks 160
5.1 Critical analysis of the current transdermal drug delivery system 160
5.2 Future perspectives on the clinical implications of the hydrogel-based skin patch 162
References 164
Bibliography 183
국 문 초 록 186
-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjecthydrogels-
dc.subjectskin patch-
dc.subjectwound repair-
dc.subjecttransdermal drug delivery-
dc.subjectiontophoresis-
dc.subject하이드로겔-
dc.subject피부 패치-
dc.subject상처 치료-
dc.subject경피 약물전달-
dc.subject이온영동법-
dc.subject.ddc660.6-
dc.titleHydrogel-Based Skin Patch for Promoting Wound Repair and Transdermal Drug Delivery-
dc.title.alternative상처 치료 및 경피 약물전달을 향상시키기 위한 하이드로겔 기반 피부 패치-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.department공과대학 화학생물공학부-
dc.description.degreeDoctor-
dc.date.awarded2020-08-
dc.identifier.uciI804:11032-000000161377-
dc.identifier.holdings000000000043▲000000000048▲000000161377▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share