Publications

Detailed Information

Geophysical investigations of the subduction zone in Peru and the 2017 Pohang earthquake in South Korea : 페루 섭입대와 2017년 포항지진의 지구물리학적 연구

DC Field Value Language
dc.contributor.advisor김영희-
dc.contributor.author임호빈-
dc.date.accessioned2020-10-13T04:03:04Z-
dc.date.available2020-10-13T04:03:04Z-
dc.date.issued2020-
dc.identifier.other000000162200-
dc.identifier.urihttps://hdl.handle.net/10371/170716-
dc.identifier.urihttp://dcollection.snu.ac.kr/common/orgView/000000162200ko_KR
dc.description학위논문 (박사) -- 서울대학교 대학원 : 자연과학대학 지구환경과학부, 2020. 8. 김영희.-
dc.description.abstractThis thesis provides a better understanding to the subduction zone in southern Peru and the 2017 Pohang earthquake in South Korea. The southern Peru is a transitional zone from the normal-dipping to the flat slab regions. I defined the geometry of the Nazca slab using the intra-slab earthquakes and converted teleseismic phases (previous published studies). The P and S waves obtained by the double-difference tomography indicate different hydration states of the slab and mantle wedge or layer. The Pohang earthquake occurred near the enhanced geothermal power plant on 15 November 2017. One of the main goal was to suggest a physical understanding to explain the occurrence of the earthquake in a framework of the linear poroelasticity. I suggested that the timing of the earthquake is attributed to slow fluid diffusion.

I improved the availability of the permanent seismic data deployed in South Korea. The most of the broadband seismometers in South Korea (30 of 52 in 2016) are a type of borehole. While the borehole seismometers produce low human-induced noise, they might have a drawback of an uncertain orientation. I developed a new method obtaining the orientation without having to assume for an isotropic medium (i.e., anisotropic medium). This method normalizes the effect of seismic sources and determines the orientation of a seismometer. I applied the method to the Korean data in 2005--2016. Also, we anticipated that this method can be applied to more noisy environment (e.g., ocean bottom).

The ongoing research is about the Clark fault in southern California using a dense geophone array. The 129 geophones were deployed across the distance of about 2.5 km, slightly oblique to the fault. One of 42 teleseismic earthquakes was usable to compute P-wave receiver functions for imaging the fault. The width of the fault zone is inferred as about 460 m from the delayed P-wave arrivals (up to 0.6 s) and a bifurcation of a reflection branch. Deconvolution of the vertical-component signal recorded from one station distant (~1.2 km) from the fault was effective to identify phases that are reverberated in or refracted by the narrow fault zone.
-
dc.description.abstract페루 남부 섭입대와 모멘트 규모 5.5의 2017년 포항에서 발생한 지진을 연구하였다. 페루 남부 섭입대는 섭입한 판이 점차 편평해지는 지역이다. 섭입판 안에서 발생한 지진과 원거리 변환 위상(후자는 이전 연구 결과)을 활용해서 섭입판의 기하적 구조가 급격한 변화 없이 점진적이라는 것을 보였다. 이중 차분 토모그래피 방법을 적용하여 3차원 P파와 S파의 속도 구조를 얻었으며, 이것의 변화가 지표의 화산활동과 섭입 메커니즘에 어떤 의미를 지니는지 해석하였다. 전호분지와 배호분지 아래의 섭입판과 맨틀쐐기(또는 얇은 맨틀 층)의 수화 정도에 불균질성으로 해석하였다. 포항 지진은 심부 지열 발전소 근처에서 2017년 11월 15일에 발생했다. 공극탄성이론을 바탕으로 포항 지진이 발생한 물리적 이유를 밝혀내기 위한 연구를 하였다. 포항 지진이 발생한 시간은 느린 유체 확산으로 설명할 수 있음을 보였다.

대한민국에 설치된 영구 지진 관측 데이터의 가용성을 늘리는데 기여하였다. 광대역 지진계 대부분(2016년 기준 52개 중 30개)은 시추공에 삽입하는 형태의 지진계이다. 시추공 지진계는 인위적 잡음이 낮지만, 방위각을 알 수 없다는 단점이 있다. 비등방적 매질을 가정하면서도 방위각을 결정할 수 있는 새로운 방법을 개발하였다. 이 방법은 지진 효과를 제거하면서 지진계의 방위각을 결정한다. 2005년부터 2016년까지 대한민국에 설치된 지진계 데이터에 적용하여 방위각을 결정하였다. 또한, 이 방법이 잡음이 더 심한 환경(e.g., 해양저)에 설치된 지진계에도 일부 적용할 수 있음을 부분적으로 확인하였다.

진행 중인 연구 주제는 조밀한 지오폰(geophone) 임시 관측망을 활용한 캘리포니아 남부 클라크 단층(Clark fault)에 대한 연구이다. 129개의 지오폰이 2.5 km에 걸쳐 단층에 약간 비스듬히 설치되었다. 42개의 원거리 지진 중에서 1개가 P파 수신함수를 계산하기 적합한 것을 확인하였다. 지진파의 지연(0.6초 이내), 분기와 반사를 관찰해서 단층의 넓이가 약 460 m 임을 알아내었다. 디컨볼루션(deconvolution)하는 수직 성분을 단층에서 약 1.2 km 떨어진 하나의 지오폰으로 고정하는 것이 단층에 의해 다중 반사되는 위상을 분별하는데 도움이 되는 것을 알아내었다.
-
dc.description.tableofcontentsChapter 1 Introduction 1
Chapter 2 Measurement of seismometer orientation using the tangential P-wave receiver function based on harmonic decomposition 5
2.1 Introduction 7
2.2 Method 8
2.2.1 Harmonic decomposition of the receiver function 8
2.2.2 Estimation of sensor orientation 9
2.3 Synthetic test 12
2.3.1 Synthetic test for six representative models with full back-azimuth data coverage 13
2.3.2 Synthetic test with non-uniform back-azimuth data coverage 14
2.3.3 Synthetic test with the back-azimuth coverage based on real earthquake distribution 15
2.3.4 Case for various noise levels on synthetic data 16
2.3.5 Correlation between radial and tangential harmonic terms 16
2.4 Data analysis 17
2.4.1 Data acquisition and processing of Korean network data17
2.4.2 Data acquisition and processing of OBS data 18
2.5 Results 19
2.5.1 Orientation estimates for Korean seismic network 19
2.5.2 Orientation estimates for OBS network 22
2.6 Discussion 22
2.6.1 Orientation estimates of the Korean seismic network 23
2.6.2 Applicability of the method on OBS data 25
2.7 Conclusions 26
Appendices 50
2.A Supplementary materials (gure) 50
2.B Supplementary materials (table) 67
Chapter 3 Seismicity and structure of Nazca Plate subduction zone in southern Peru 72
3.1 Introduction 74
3.2 Data and methods 75
3.2.1 Data and initial velocity model 75
3.2.2 Double-dierence tomography 76
3.2.3 Construction of a slab geometry model 77
3.3 Results 78
3.3.1 Nazca slab geometry based on the double-dierence method 79
3.3.2 3-D seismic velocity structure 81
3.4 Discussion 86
3.4.1 Nazca slab geometry based on seismicity 86
3.4.2 Seismic velocity variation based on tomography 88
3.5 Conclusions 93
Appendices 105
3.A Supplementary materials (gure) 105
3.B Supplementary materials (table) 121
Chapter 4 The 2017 Mw 5.5 Pohang earthquake, South Korea, and poroelastic stress changes associated with uid injection 124
4.1 Introduction 126
4.2 Poroelastic modeling 128
4.2.1 Poroelastic constitutive equations 128
4.2.2 Poroelastic parameters 130
4.2.3 Well geometry and uid injection history 131
4.2.4 Coulomb failure stress change 132
4.3 Earthquake location 133
4.3.1 Pohang earthquake location 133
4.3.2 Relocated hypocenters of previous earthquakes, foreshocks and aftershocks 134
4.4 Poroelastic modeling against hydraulic diusivity 135
4.4.1 Poroelastic stresse changes of four representative models: Example 135
4.4.2 Search for possible ranges of D for Pohang earthquake occurrence 138
4.4.3 Stresses and pore pressure changes on the fault plane 140
4.4.4 Temporal evolution of change in the Coulomb failure stress 141
4.4.5 Coulomb failure stress change and hypocenters on the fault plane 141
4.5 Discussion 143
4.5.1 Delay in earthquake occurrence 143
4.5.2 Amplitude threshold of change in the Coulomb failure stress 144
4.5.3 Amplitude of change in the Coulomb failure stress and magnitude of the Pohang earthquake 145
4.5.4 Previous earthquakes in response to poroelastic stresse changes 146
4.5.5 Heterogeneity of hydraulic property near/at the wells 147
4.6 Summary 147
Appendices 164
4.A Hypocenter determination 164
4.B Supplementary materials (gure) 166
4.C Supplementary materials (table) 177
Chapter 5 Fault zone structure imaged by teleseismic receiver function with geophone array in Clark fault, California 179
5.1 Introduction 181
5.2 Data and method 182
5.2.1 Earthquake selection 182
5.2.2 Receiver function 183
5.2.3 Conventional P wave receiver functions 183
5.2.4 Receiver functions with a xed denominator 184
5.2.5 Z's over a Z of a single station 184
5.3 Results 185
5.3.1 Comparison between conventional and new receiver functions 185
5.3.2 Distortion of the vertical components 185
5.3.3 Schematics of travel time for a vertical fault model 186
5.3.4 High frequency RFs 187
5.3.5 Summary 187
Chapter 6 Conclusions 201
References 204
초록 222
Acknowledgements 224
-
dc.language.isoeng-
dc.publisher서울대학교 대학원-
dc.subjectSubduction zone-
dc.subject2017 Pohang earthquake-
dc.subjectPoroelasticity-
dc.subjectAnisotropy-
dc.subjectOrientation-
dc.subjectClark fault-
dc.subject섭입대-
dc.subject2017년 포항 지진-
dc.subject공극탄성-
dc.subject비등방성-
dc.subject방위각-
dc.subject클라크 단층-
dc.subject.ddc550-
dc.titleGeophysical investigations of the subduction zone in Peru and the 2017 Pohang earthquake in South Korea-
dc.title.alternative페루 섭입대와 2017년 포항지진의 지구물리학적 연구-
dc.typeThesis-
dc.typeDissertation-
dc.contributor.AlternativeAuthorHobin Lim-
dc.contributor.department자연과학대학 지구환경과학부-
dc.description.degreeDoctor-
dc.date.awarded2020-08-
dc.identifier.uciI804:11032-000000162200-
dc.identifier.holdings000000000043▲000000000048▲000000162200▲-
Appears in Collections:
Files in This Item:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share