Browse

Mesenchymal stem cell-derived magnetic extracellular nanovesicles for targeting and treatment of ischemic stroke

Cited 18 time in Web of Science Cited 18 time in Scopus
Authors
Kim, Han Young; Kim, Tae Jung; Kang, Lami; Kim, Young-Ju; Kang, Min Kyoung; Kim, Jonghoon; Ryu, Ju Hee; Hyeon, Taeghwan; Yoon, Byung-Woo; Ko, Sang-Bae; Kim, Byung-Soo
Issue Date
2020-06
Citation
Biomaterials, Vol.243, p. 119942
Keywords
Extracellular nanovesiclesExosomesIron oxide nanoparticlesMesenchymal stem cellsIschemic stroke
Abstract
Exosomes and extracellular nanovesicles (NV) derived from mesenchymal stem cells (MSC) may be used for the treatment of ischemic stroke owing to their multifaceted therapeutic benefits that include the induction of angiogenesis, anti-apoptosis, and anti-inflammation. However, the most serious drawback of using exosomes and NV for ischemic stroke is the poor targeting on the ischemic lesion of brain after systemic administration, thereby yielding a poor therapeutic outcome. In this study, we show that magnetic NV (MNV) derived from iron oxide nanoparticles (IONP)-harboring MSC can drastically improve the ischemic-lesion targeting and the therapeutic outcome. Because IONP stimulated expressions of therapeutic growth factors in the MSC, MNV contained greater amounts of those therapeutic molecules compared to NV derived from naive MSC. Following the systemic injection of MNV into transient middle-cerebral-artery-occlusion (MCAO)-induced rats, the magnetic navigation increased the MNV localization to the ischemic lesion by 5.1 times. The MNV injection and subsequent magnetic navigation promoted the anti-inflammatory response, angiogenesis, and anti-apoptosis in the ischemic brain lesion, thereby yielding a considerably decreased infarction volume and improved motor function. Overall, the proposed MNV approach may overcome the major drawback of the conventional MSC-exosome therapy or NV therapy for the treatment of ischemic stroke.
ISSN
0142-9612
URI
https://hdl.handle.net/10371/171768
DOI
https://doi.org/10.1016/j.biomaterials.2020.119942
Files in This Item:
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Chemical and Biological Engineering (화학생물공학부)Journal Papers (저널논문_화학생물공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse