Publications

Detailed Information

Molecular basis for the single-nucleotide precision of primary microRNA processing

DC Field Value Language
dc.contributor.authorKwon, S. Chul-
dc.contributor.authorBaek, S. Chan-
dc.contributor.authorChoi, Yeon-Gil-
dc.contributor.authorYang, Jihye-
dc.contributor.authorLee, Young-suk-
dc.contributor.authorWoo, Jae-Sung-
dc.contributor.authorKim, V. Narry-
dc.date.accessioned2021-01-31T08:15:20Z-
dc.date.available2021-01-31T08:15:20Z-
dc.date.created2019-08-23-
dc.date.issued2019-02-
dc.identifier.citationMolecular Cell, Vol.73 No.3, pp.505-518.e5-
dc.identifier.issn1097-2765-
dc.identifier.other81808-
dc.identifier.urihttps://hdl.handle.net/10371/171949-
dc.description.abstractMicroprocessor, composed of DROSHA and its cofactor DGCR8, initiates microRNA(miRNA) biogenesis by processing the primary transcripts of miRNA (pri-miRNAs). Here we investigate the mechanism by which Microprocessor selects the cleavage site with single-nucleotide precision, which is crucial for the specificity and functionality of miRNAs. By testing similar to 40,000 pri-miRNA variants, we find that for some pri-miRNAs the cleavage site is dictated mainly by the mGHG motif embedded in the lower stem region of pri-miRNA. Structural modeling and deep-sequencing-based complementation experiments show that the double-stranded RNA-binding domain (dsRBD) of DROSHA recognizes mGHG to place the catalytic center in the appropriate position. The mGHG motif as well as the mGHG-recognizing residues in DROSHA dsRBD are conserved across eumetazoans, suggesting that this mechanism emerged in an early ancestor of the animal lineage. Our findings provide a basis for the understanding of miRNA biogenesis and rational design of accurate small-RNA-based gene silencing.-
dc.language영어-
dc.publisherCell Press-
dc.titleMolecular basis for the single-nucleotide precision of primary microRNA processing-
dc.typeArticle-
dc.contributor.AlternativeAuthor김빛내리-
dc.identifier.doi10.1016/j.molcel.2018.11.005-
dc.citation.journaltitleMolecular Cell-
dc.identifier.wosid000458015200011-
dc.identifier.scopusid2-s2.0-85061010954-
dc.citation.endpage518.e5-
dc.citation.number3-
dc.citation.startpage505-
dc.citation.volume73-
dc.identifier.sci000458015200011-
dc.description.isOpenAccessY-
dc.contributor.affiliatedAuthorKim, V. Narry-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusRNA-INTERFERENCE-
dc.subject.keywordPlusRIBONUCLEASE-III-
dc.subject.keywordPlusSEQUENCE DETERMINANTS-
dc.subject.keywordPlusREAD ALIGNMENT-
dc.subject.keywordPlusDICER-
dc.subject.keywordPlusDROSHA-
dc.subject.keywordPlusRECOGNITION-
dc.subject.keywordPlusCLEAVAGE-
dc.subject.keywordPlusCOMPLEX-
dc.subject.keywordPlusPRECURSORS-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Natural Sciences
  • School of Biological Sciences
Research Area Molecular Biology & Genetics

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share