Publications

Detailed Information

Balancing Light Absorptivity and Carrier Conductivity of Graphene Quantum Dots for High-Efficiency Bulk Heterojunction Solar Cells

DC Field Value Language
dc.contributor.authorKim, Jung Kyu-
dc.contributor.authorPark, Myung Jin-
dc.contributor.authorKim, Sang Jin-
dc.contributor.authorWang, Dong Hwan-
dc.contributor.authorCho, Sung Pyo-
dc.contributor.authorBae, Sukang-
dc.contributor.authorPark, Jong Hyeok-
dc.contributor.authorHong, Byung Hee-
dc.date.accessioned2021-01-31T08:27:12Z-
dc.date.available2021-01-31T08:27:12Z-
dc.date.created2020-12-10-
dc.date.issued2013-08-
dc.identifier.citationACS Nano, Vol.7 No.8, pp.7207-7212-
dc.identifier.issn1936-0851-
dc.identifier.other118928-
dc.identifier.urihttps://hdl.handle.net/10371/172129-
dc.description.abstractGraphene quantum dots (GQDs) have been considered as a novel material because their electronic and optoelectronic properties can be tuned by controlling the size and the functional groups of GQDs. Here we report the synthesis of reduction-controlled GQDs and their application to bulk heterojunction (BHJ) solar cells with enhanced power conversion, efficiency (PCE). Three different types of GQDs-graphene oxide quantum dots (GOQDs), 5 h reduced GQDs, and 10 h reduced GQDs-were tested in BM solar cells, and the results indicate that GQDs play an important role in increasing optical absorptivity and charge carrier extraction of the BIB solar cells. The enhanced optical absorptivity by rich functional groups in GOQDs increases short-circuit current, while the improved conductivity of reduced GQDs leads to the increase of fill factors. Thus, the reduction level of GQDs needs to be intermediate to balance the absorptivity and conductivity. Indeed, the partially reduced GQDs yielded the outstandingly improved PCE of 7.60% in BM devices compared to a reference device without GQDs (6.70%).-
dc.language영어-
dc.publisherAmerican Chemical Society-
dc.titleBalancing Light Absorptivity and Carrier Conductivity of Graphene Quantum Dots for High-Efficiency Bulk Heterojunction Solar Cells-
dc.typeArticle-
dc.contributor.AlternativeAuthor홍병희-
dc.identifier.doi10.1021/nn402606v-
dc.citation.journaltitleACS Nano-
dc.identifier.wosid000323810600085-
dc.identifier.scopusid2-s2.0-84883259391-
dc.citation.endpage7212-
dc.citation.number8-
dc.citation.startpage7207-
dc.citation.volume7-
dc.identifier.sci000323810600085-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorHong, Byung Hee-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusPOLYMER PHOTOVOLTAIC CELLS-
dc.subject.keywordPlusELECTRON-TRANSPORT LAYER-
dc.subject.keywordPlusHIGH-PERFORMANCE-
dc.subject.keywordPlusOXIDE-FILMS-
dc.subject.keywordPlusSTAMPING TRANSFER-
dc.subject.keywordPlusAG NANOPARTICLES-
dc.subject.keywordPlusEMITTING-DIODES-
dc.subject.keywordPlusDEVICES-
dc.subject.keywordPlusTRANSPARENT-
dc.subject.keywordPlusENHANCEMENT-
dc.subject.keywordAuthorgraphene quantum dots-
dc.subject.keywordAuthorbulk heterojunction solar cells-
dc.subject.keywordAuthorlight absorption-
dc.subject.keywordAuthorconductivity-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Natural Sciences
  • Department of Chemistry
Research Area Physics

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share