Browse

Breast cancer cell debris diminishes therapeutic efficacy through heme oxygenase-1-mediated inactivation of M1-like tumor-associated macrophages

Cited 2 time in Web of Science Cited 2 time in Scopus
Authors
Kim, Seung Hyeon; Saeidi, Soma; Zhong, Xiancai; Gwak, Shin-Young; Muna, Shrat Aklima; Park, Sin-Aye; Kim, Seong Hoon; Na, Hye-Kyung; Joe, Yeonsoo; Chung, Hun Taeg; Kim, Kyoung-Eun; Han, Wonshik; Surh, Young-Joon
Issue Date
2020-11
Citation
Neoplasia, Vol.22 No.11, pp.606-616
Keywords
Breast cancerChemotherapyTumor-associated macrophagesPhagocytosisTumor cell debrisHeme oxygenase-1
Abstract
Chemotherapy is commonly used as a major therapeutic option for breast cancer treatment, but its efficacy is often diminished by disruption of patient's anti-tumor immunity. Chemotherapy-generated tumor cell debris could hijack accumulated tumor-associated macrophages (TAMs), provoking tumor recurrence. Therefore, reprogramming TAMs to acquire an immunocompetent phenotype is a promising strategy to potentiate therapeutic efficacy. In this study, we analyzed the proportion of immune cells in the breast cancer patients who received chemotherapy. To validate our findings in vivo, we used a syngeneic murine breast cancer (4T1) model. Chemotherapy generates an immunosuppressive tumor microenvironment in breast cancer. Here, we show that phagocytic engulfment of tumor cell debris by TAMs reduces chemotherapeutic efficacy in a 4T1 breast cancer model. Specifically, the engulfment of tumor cell debris by macrophages reduced M1-like polarization through heme oxygenase-1 (HO-1) upregulation. Conversely, genetic or pharmacologic inhibition of HO-1 in TAMs restored the M1-like polarization. Our results demonstrate that tumor cell debris-induced HO-1 expression in macrophages regulates their polarization. Inhibition of HO-1 overexpression in TAMs may provoke a robust anti-tumor immune response, thereby potentiating the efficacy of chemotherapy.
ISSN
1522-8002
URI
https://hdl.handle.net/10371/172874
DOI
https://doi.org/10.1016/j.neo.2020.08.006
Files in This Item:
Appears in Collections:
Graduate School of Convergence Science and Technology (융합과학기술대학원)Dept. of Molecular and Biopharmaceutical Sciences (분자의학 및 바이오제약학과)Journal Papers (저널논문_분자의학 및 바이오제약학과)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse