Browse

Achieving Microstructure-Controlled Synaptic Plasticity and Long-Term Retention in Ion-Gel-Gated Organic Synaptic Transistors

Cited 24 time in Web of Science Cited 0 time in Scopus
Issue Date
2020-11
Citation
Advanced Intelligent Systems, Vol.2 No.11, p. 2000012
Keywords
artificial synapses;ion-gel-gated organic transistors;neuromorphic computing;neuromorphic electronics;organic synaptic transistors
Abstract
Organic synaptic transistors using intrinsic (i.e., non-doped) organic semiconductors have demonstrated various synaptic functions to mimic biological synapses, but the devices show limited long-term retention behaviors although long-term memory is essential for neuromorphic computing. To achieve long-term retention time, correlating the synaptic responses with the microstructures of polymer semiconductor is an imperative step. It is shown that synaptic plasticity in ion-gel-gated organic synaptic transistors (IGOSTs) can be modulated by controlling the microstructure of organic semiconductors and that long-term memory retention can be significantly prolonged by increasing their crystallinity. The crystallinity of poly(3-hexylthiophene-2,5-diyl) (P3HT) films that are spun-cast on bare and self-assembled monolayer is systematically controlled, before and after thermal treatments. Long-term retention tends to extend, as the crystallinity increases. To evaluate synaptic current decay behaviors, it is suggested that the relaxation is a result of de-doping of the polymer semiconductor over time. The recognition of handwritten digits is simulated and a high classification accuracy (>92%) is achieved with IGOSTs including high crystalline P3HT film. The study provides fundamental information about the effects of polymer microstructure on synaptic plasticity of IGOSTs, which may be applicable in neuromorphic electronics.
ISSN
2640-4567
URI
https://hdl.handle.net/10371/179120
DOI
https://doi.org/10.1002/aisy.202000012
Files in This Item:
There are no files associated with this item.
Appears in Collections:
Seoul National University(서울대학교)Featured Researcher's Articles
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse