Publications

Detailed Information

Structure of the plant growth-promoting factor YxaL from the rhizobacterium Bacillus velezensis and its application to protein engineering

DC Field Value Language
dc.contributor.authorKim, Jiheon-
dc.contributor.authorHa Pham-
dc.contributor.authorBaek, Yeongjin-
dc.contributor.authorJo, Inseong-
dc.contributor.authorKim, Yong-Hak-
dc.contributor.authorHa, Nam-Chul-
dc.date.accessioned2022-05-04T01:57:12Z-
dc.date.available2022-05-04T01:57:12Z-
dc.date.created2022-01-13-
dc.date.issued2022-01-01-
dc.identifier.citationActa Crystallographica Section D-structural Biology, Vol.78, pp.104-112-
dc.identifier.issn2059-7983-
dc.identifier.urihttps://hdl.handle.net/10371/179485-
dc.description.abstractThe YxaL protein was isolated from the soil bacterium Bacillus velezensis and has been shown to promote the root growth of symbiotic plants. YxaL has further been suggested to act as an exogenous signaling protein to induce the growth and branching of plant roots. Amino acid sequence analysis predicted YxaL to exhibit an eight-bladed beta-propeller fold stabilized by six tryptophandocking motifs and two modified motifs. Protein engineering to improve its structural stability is needed to increase the utility of YxaL as a plant growth-promoting factor. Here, the crystal structure of YxaL from B. velezensis was determined at 1.8 angstrom resolution to explore its structural features for structure-based protein engineering. The structure showed the typical eight-bladed beta-propeller fold with structural variations in the third and fourth blades, which may decrease the stability of the beta-propeller fold. Engineered proteins targeting the modified motifs were subsequently created. Crystal structures of the engineered YxaL proteins showed that the typical tryptophan-docking interaction was restored in the third and fourth blades, with increased structural stability, resulting in improved root growth-promoting activity in Arabidopsis seeds. The work is an example of structure-based protein engineering to improve the structural stability of beta-propellor fold proteins.-
dc.language영어-
dc.publisherINT UNION CRYSTALLOGRAPHY-
dc.titleStructure of the plant growth-promoting factor YxaL from the rhizobacterium Bacillus velezensis and its application to protein engineering-
dc.typeArticle-
dc.identifier.doi10.1107/S2059798321011724-
dc.citation.journaltitleActa Crystallographica Section D-structural Biology-
dc.identifier.wosid000738234900010-
dc.identifier.scopusid2-s2.0-85123230123-
dc.citation.endpage112-
dc.citation.startpage104-
dc.citation.volume78-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorHa, Nam-Chul-
dc.type.docTypeArticle-
dc.description.journalClass1-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share