Coupling structural evolution and oxygen-redox electrochemistry in layered transition metal oxides

Cited 55 time in Web of Science Cited 60 time in Scopus

Eum, Donggun; Kim, Byunghoon; Song, Jun-Hyuk; Park, Hyeokjun; Jang, Ho-Young; Kim, Sung Joo; Cho, Sung-Pyo; Lee, Myeong Hwan; Heo, Jae Hoon; Park, Jaehyun; Ko, Youngmin; Park, Sung Kwan; Kim, Jinsoo; Oh, Kyungbae; Kim, Do-Hoon; Kang, Seok Ju; Kang, Kisuk

Issue Date
Nature Publishing Group
Nature Materials, Vol.21 No.6, pp.664-672
© 2022, The Author(s), under exclusive licence to Springer Nature Limited.Lattice oxygen redox offers an unexplored way to access superior electrochemical properties of transition metal oxides (TMOs) for rechargeable batteries. However, the reaction is often accompanied by unfavourable structural transformations and persistent electrochemical degradation, thereby precluding the practical application of this strategy. Here we explore the close interplay between the local structural change and oxygen electrochemistry during short- and long-term battery operation for layered TMOs. The substantially distinct evolution of the oxygen-redox activity and reversibility are demonstrated to stem from the different cation-migration mechanisms during the dynamic de/intercalation process. We show that the π stabilization on the oxygen oxidation initially aids in the reversibility of the oxygen redox and is predominant in the absence of cation migrations; however, the π-interacting oxygen is gradually replaced by σ-interacting oxygen that triggers the formation of O–O dimers and structural destabilization as cycling progresses. More importantly, it is revealed that the distinct cation-migration paths available in the layered TMOs govern the conversion kinetics from π to σ interactions. These findings constitute a step forward in unravelling the correlation between the local structural evolution and the reversibility of oxygen electrochemistry and provide guidance for further development of oxygen-redox layered electrode materials.
Files in This Item:
There are no files associated with this item.
Appears in Collections:
College of Engineering/Engineering Practice School (공과대학/대학원)Dept. of Materials Science and Engineering (재료공학부)Journal Papers (저널논문_재료공학부)
  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.