Publications

Detailed Information

Reduction in mitochondrial oxidative stress mediates hypoxia-induced resistance to cisplatin in human transitional cell carcinoma cells

Cited 10 time in Web of Science Cited 11 time in Scopus
Authors

Kim, Myung-Chul; Hwang, Sung-Hyun; Yang, Yeseul; Kim, Na-Yon; Kim, Yongbaek

Issue Date
2021-07
Publisher
Elsevier BV
Citation
Neoplasia, Vol.23 No.7, pp.653-662
Abstract
Tumor hypoxia is known to promote the acquisition of more aggressive phenotypes in human transitional cell carcinoma (TCC), including drug resistance. Accumulating evidence suggests that mitochondria play a central role in the chemoresistance of TCC. However, the role of mitochondria in the hypoxia-induced drug resistance in TCC remains elusive. The present study investigated the function of mitochondria in the drug resistance using a TCC cell line under hypoxic conditions. In vitro hypoxia (0.1% O-2, 48 h) was achieved by incubating TCC cells in air chamber. Mitochondrial events involving hypoxia-induced drug resistance were assessed. Hypoxia significantly reduced the cisplatin-induced apoptosis of TCC cells. Additionally, hypoxia substantially decreased the level of mitochondrial reactive oxygen species (ROS) generated by cisplatin treatment. Analogously, elimination of mitochondrial ROS significantly rescued cells from cisplatin-induced apoptosis. Hypoxia enhanced mitochondrial hyperpolarization, which was not related to ATP production or the reversal of ATP synthase activity. The mitochondrial DNA (mtDNA) amplification efficiency data illustrated that hypoxia significantly prevented oxidative damage to the mitogenome. Moreover, transmission electron microscopy revealed that cisplatin-induced disruption of the mitochondrial ultrastructure was abated under hypoxic conditions. Notably, depletion of mtDNA by ethidium bromide abrogated hypoxia-induced resistance to cisplatin. Taken together, the present study demonstrated that TCC cells exposed to hypoxic conditions rendered mitochondria less sensitive to oxidative stress induced by cisplatin treatment, leading to enhanced drug resistance.
ISSN
1476-5586
URI
https://hdl.handle.net/10371/190420
DOI
https://doi.org/10.1016/j.neo.2021.05.013
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share