Publications
Detailed Information
Calibrated propensity score method for survey nonresponse in cluster sampling
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, Jae Kwang | - |
dc.contributor.author | Kwon, Yongchan | - |
dc.contributor.author | Paik, Myunghee Cho | - |
dc.date.accessioned | 2023-04-19T08:47:18Z | - |
dc.date.available | 2023-04-19T08:47:18Z | - |
dc.date.created | 2018-06-11 | - |
dc.date.created | 2018-06-11 | - |
dc.date.issued | 2016-06 | - |
dc.identifier.citation | Biometrika, Vol.103 No.2, pp.461-473 | - |
dc.identifier.issn | 0006-3444 | - |
dc.identifier.uri | https://hdl.handle.net/10371/191172 | - |
dc.description.abstract | Weighting adjustment is commonly used in survey sampling to correct for unit nonresponse. In cluster sampling, the missingness indicators are often correlated within clusters and the response mechanism is subject to cluster-specific nonignorable missingness. Based on a parametric working model for the response mechanism that incorporates cluster-specific nonignorable missingness, we propose a method of weighting adjustment. We provide a consistent estimator of the mean or totals in cases where the study variable follows a generalized linear mixed-effects model. The proposed method is robust in the sense that the consistency of the estimator does not require correct specification of the functional forms of the response and outcome models. A consistent variance estimator based on Taylor linearization is also proposed. Numerical results, including a simulation and a real-data application, are presented. | - |
dc.language | 영어 | - |
dc.publisher | Oxford University Press | - |
dc.title | Calibrated propensity score method for survey nonresponse in cluster sampling | - |
dc.type | Article | - |
dc.identifier.doi | 10.1093/biomet/asw004 | - |
dc.citation.journaltitle | Biometrika | - |
dc.identifier.wosid | 000377429000016 | - |
dc.identifier.scopusid | 2-s2.0-84975166235 | - |
dc.citation.endpage | 473 | - |
dc.citation.number | 2 | - |
dc.citation.startpage | 461 | - |
dc.citation.volume | 103 | - |
dc.description.isOpenAccess | N | - |
dc.contributor.affiliatedAuthor | Paik, Myunghee Cho | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.subject.keywordPlus | PARAMETRIC FRACTIONAL IMPUTATION | - |
dc.subject.keywordPlus | MISSING DATA | - |
dc.subject.keywordPlus | CAUSAL INFERENCE | - |
dc.subject.keywordPlus | INCOMPLETE DATA | - |
dc.subject.keywordPlus | MODEL | - |
dc.subject.keywordPlus | ROBUSTNESS | - |
dc.subject.keywordAuthor | Calibration estimation | - |
dc.subject.keywordAuthor | Nonignorable missingness | - |
dc.subject.keywordAuthor | Survey sampling | - |
dc.subject.keywordAuthor | Weighting | - |
- Appears in Collections:
- Files in This Item:
- There are no files associated with this item.
Item View & Download Count
Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.