Publications

Detailed Information

Calibrated propensity score method for survey nonresponse in cluster sampling

DC Field Value Language
dc.contributor.authorKim, Jae Kwang-
dc.contributor.authorKwon, Yongchan-
dc.contributor.authorPaik, Myunghee Cho-
dc.date.accessioned2023-04-19T08:47:18Z-
dc.date.available2023-04-19T08:47:18Z-
dc.date.created2018-06-11-
dc.date.created2018-06-11-
dc.date.issued2016-06-
dc.identifier.citationBiometrika, Vol.103 No.2, pp.461-473-
dc.identifier.issn0006-3444-
dc.identifier.urihttps://hdl.handle.net/10371/191172-
dc.description.abstractWeighting adjustment is commonly used in survey sampling to correct for unit nonresponse. In cluster sampling, the missingness indicators are often correlated within clusters and the response mechanism is subject to cluster-specific nonignorable missingness. Based on a parametric working model for the response mechanism that incorporates cluster-specific nonignorable missingness, we propose a method of weighting adjustment. We provide a consistent estimator of the mean or totals in cases where the study variable follows a generalized linear mixed-effects model. The proposed method is robust in the sense that the consistency of the estimator does not require correct specification of the functional forms of the response and outcome models. A consistent variance estimator based on Taylor linearization is also proposed. Numerical results, including a simulation and a real-data application, are presented.-
dc.language영어-
dc.publisherOxford University Press-
dc.titleCalibrated propensity score method for survey nonresponse in cluster sampling-
dc.typeArticle-
dc.identifier.doi10.1093/biomet/asw004-
dc.citation.journaltitleBiometrika-
dc.identifier.wosid000377429000016-
dc.identifier.scopusid2-s2.0-84975166235-
dc.citation.endpage473-
dc.citation.number2-
dc.citation.startpage461-
dc.citation.volume103-
dc.description.isOpenAccessN-
dc.contributor.affiliatedAuthorPaik, Myunghee Cho-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusPARAMETRIC FRACTIONAL IMPUTATION-
dc.subject.keywordPlusMISSING DATA-
dc.subject.keywordPlusCAUSAL INFERENCE-
dc.subject.keywordPlusINCOMPLETE DATA-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusROBUSTNESS-
dc.subject.keywordAuthorCalibration estimation-
dc.subject.keywordAuthorNonignorable missingness-
dc.subject.keywordAuthorSurvey sampling-
dc.subject.keywordAuthorWeighting-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share