Publications

Detailed Information

A high-resolution HLA reference panel capturing global population diversity enables multi-ancestry fine-mapping in HIV host response

Cited 46 time in Web of Science Cited 48 time in Scopus
Authors

Luo, Yang; Kanai, Masahiro; Choi, Wanson; Li, Xinyi; Sakaue, Saori; Yamamoto, Kenichi; Ogawa, Kotaro; Gutierrez-Arcelus, Maria; Gregersen, Peter K.; Stuart, Philip E.; Elder, James T.; Forer, Lukas; Schoenherr, Sebastian; Fuchsberger, Christian; Smith, Albert V.; Fellay, Jacques; Carrington, Mary; Haas, David W.; Guo, Xiuqing; Palmer, Nicholette D.; Chen, Yii-Der Ida; Rotter, Jerome I.; Taylor, Kent D.; Rich, Stephen S.; Correa, Adolfo; Wilson, James G.; Kathiresan, Sekar; Cho, Michael H.; Metspalu, Andres; Esko, Tonu; Okada, Yukinori; Han, Buhm; McLaren, Paul J.; Raychaudhuri, Soumya

Issue Date
2021-10
Publisher
Nature Publishing Group
Citation
Nature Genetics, Vol.53 No.10, pp.1504-1516
Abstract
A high-resolution reference panel based on whole-genome sequencing data enables accurate imputation of HLA alleles across diverse populations and fine-mapping of HLA association signals for HIV-1 host response. Fine-mapping to plausible causal variation may be more effective in multi-ancestry cohorts, particularly in the MHC, which has population-specific structure. To enable such studies, we constructed a large (n = 21,546) HLA reference panel spanning five global populations based on whole-genome sequences. Despite population-specific long-range haplotypes, we demonstrated accurate imputation at G-group resolution (94.2%, 93.7%, 97.8% and 93.7% in admixed African (AA), East Asian (EAS), European (EUR) and Latino (LAT) populations). Applying HLA imputation to genome-wide association study data for HIV-1 viral load in three populations (EUR, AA and LAT), we obviated effects of previously reported associations from population-specific HIV studies and discovered a novel association at position 156 in HLA-B. We pinpointed the MHC association to three amino acid positions (97, 67 and 156) marking three consecutive pockets (C, B and D) within the HLA-B peptide-binding groove, explaining 12.9% of trait variance.
ISSN
1061-4036
URI
https://hdl.handle.net/10371/191473
DOI
https://doi.org/10.1038/s41588-021-00935-7
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Medicine
  • Department of Medicine
Research Area Bioinformatics, Computational Biology, Genomics, Human Leukocyte Antigen, Statistical Genetics

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share