Detailed Information

Heterotrophic feeding as a newly identified survival strategy of the dinoflagellate Symbiodinium

Cited 126 time in Web of Science Cited 135 time in Scopus

Jeong, Hae Jin; Yoo, Yeong Du; Kang, Nam Seon; Lim, An Suk; Seong, Kyeong Ah; Lee, Sung Yeon; Lee, Moo Joon; Lee, Kyung Ha; Kim, Hyung Seop; Shin, Woongghi; Nam, Seung Won; Yih, Wonho; Lee, Kitack

Issue Date
National Academy of Sciences
Proceedings of the National Academy of Sciences of the United States of America, Vol.109 No.31, pp.12604-12609
Survival of free-living and symbiotic dinoflagellates (Symbiodinium spp.) in coral reefs is critical to the maintenance of a healthy coral community. Most coral reefs exist in oligotrophic waters, and their survival strategy in such nutrient-depleted waters remains largely unknown. In this study, we found that two strains of Symbiodinium spp. cultured from the environment and acquired from the tissues of the coral Alveopora japonica had the ability to feed heterotrophically. Symbiodinium spp. fed on heterotrophic bacteria, cyanobacteria (Synechococcus spp.), and small microalgae in both nutrient-replete and nutrient-depleted conditions. Cultured free-living Symbiodinium spp. displayed no autotrophic growth under nitrogen-depleted conditions, but grew when provided with prey. Our results indicate that Symbiodinium spp.'s mixotrophic activity greatly increases their chance of survival and their population growth under nitrogen-depleted conditions, which tend to prevail in coral habitats. In particular, free-living Symbiodinium cells acquired considerable nitrogen from algal prey, comparable to or greater than the direct uptake of ammonium, nitrate, nitrite, or urea. In addition, free-living Symbiodinium spp. can be a sink for planktonic cyanobacteria (Synechococcus spp.) and remove substantial portions of Synechococcus populations from coral reef waters. Our discovery of Symbiodinium's feeding alters our conventional views of the survival strategies of photosynthetic Symbiodinium and corals.
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Natural Sciences
  • Department of Earth and Environmental Sciences
Research Area Aquatic Microbial Ecology, Biological Oceanography, Plankton


Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.