Publications

Detailed Information

Effect of maximum coarse aggregate size on dynamic compressive strength of high-strength concrete

Cited 52 time in Web of Science Cited 57 time in Scopus
Authors

Kim, Kyoung-Min; Lee, Sangho; Cho, Jae-Yeol

Issue Date
2019-03
Publisher
Pergamon Press Ltd.
Citation
International Journal of Impact Engineering, Vol.125, pp.107-116
Abstract
Dynamic increase factor (DIF) is a measure of the rate effect in the analysis and design of structures subjected to impact or impulsive loads. A variety of DIFs have been suggested based on the results of split Hopkinson pressure bar (SHPB) tests, which is the test technique most commonly used to obtain dynamic material properties. However, due to the lack of a standard test method and some limitations in the SHPB equipment, most SHPB tests have been conducted for mortar or concrete specimens containing small size coarse aggregate that is very different from the actual concrete used in construction. The DIFs that are provided in most structural design codes are based on these test results. Therefore, it is necessary to investigate the effect of coarse aggregate size on the dynamic concrete compressive strength. In this study, a series of SHPB tests were conducted for mortar and concrete specimens with various maximum aggregate sizes. The test results indicated that the larger maximum coarse aggregate sizes induce larger heterogeneity of specimens. On the other hand, the pure rate DIFs did not exhibit a dependency on the maximum coarse aggregate size. Based on these results, guidance as to the maximum coarse aggregate size of concrete specimens for SHPB tests is provided.
ISSN
0734-743X
URI
https://hdl.handle.net/10371/198281
DOI
https://doi.org/10.1016/j.ijimpeng.2018.11.003
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share