Publications

Detailed Information

A better statistical method of predicting postsurgery soft tissue response in Class II patients

Cited 24 time in Web of Science Cited 19 time in Scopus
Authors

Lee, Ho-Jin; Suh, Hee-Yeon; Lee, Yun-Sik; Lee, Shin-Jae; Donatelli, Richard E.; Dolce, Calogero; Wheeler, Timothy T.

Issue Date
2014-03
Publisher
E H Angle Orthodontists Research & Education Foundation, Inc.
Citation
Angle Orthodontist, Vol.84 No.2, pp.322-328
Abstract
Objective: To propose a better statistical method of predicting postsurgery soft tissue response in Class II patients. Materials and Methods: The subjects comprise 80 patients who had undergone surgical correction of severe Class II malocclusions. Using 228 predictor and 64 soft tissue response variables, we applied two multivariate methods of forming prediction equations, the conventional ordinary least squares (OLS) method and the partial least squares (PLS) method. After fitting the equation, the bias and a mean absolute prediction error were calculated. To evaluate the predictive performance of the prediction equations, a leave-one-out cross-validation method was used. Results: The multivariate PLS method provided a significantly more accurate prediction than the conventional OLS method. Conclusion: The multivariate PLS method was more satisfactory than the OLS method in accurately predicting the soft tissue profile change after surgical correction of severe Class II malocclusions.
ISSN
0003-3219
URI
https://hdl.handle.net/10371/198571
DOI
https://doi.org/10.2319/050313-338.1
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share