Publications

Detailed Information

Time-Domain Measurement Data Accumulation for Slow Moving Point Target Detection in Heavily Cluttered Environments Using CNN

DC Field Value Language
dc.contributor.authorCho, Wonmin-
dc.contributor.authorKwak, Nojun-
dc.date.accessioned2024-02-01T00:11:23Z-
dc.date.available2024-02-01T00:11:23Z-
dc.date.created2024-01-31-
dc.date.created2024-01-31-
dc.date.created2024-01-31-
dc.date.issued2023-11-
dc.identifier.citationJournal of Electromagnetic Engineering and Science, Vol.23 No.6, pp.490-501-
dc.identifier.issn2234-8409-
dc.identifier.urihttps://hdl.handle.net/10371/198963-
dc.description.abstractIn modern radars, the target detection probability is increased by lowering the detection threshold via signal processing to detect a point target with a small radar cross-section value. However, a lower threshold increases the number of false targets. In the conventional tracking method, which uses a general tracking filter, the measurement data between scans should be compared. Therefore, for a large amount of acquired measurement data, the computational complexity can be reduced by accumulating the acquired measurement data over time, recognizing the target movement as a pattern, and training a convolutional neural network (CNN) model. Here, we propose a method to create a desired target scenario by transfer learning and estimate the target position using the activation map of a binary detector CNN model. The model can detect a target using the actual acquired radar data, and the processing time remains constant, regardless of the number of false alarms.-
dc.language영어-
dc.publisher한국전자파학회-
dc.titleTime-Domain Measurement Data Accumulation for Slow Moving Point Target Detection in Heavily Cluttered Environments Using CNN-
dc.typeArticle-
dc.identifier.doi10.26866/jees.2023.6.r.194-
dc.citation.journaltitleJournal of Electromagnetic Engineering and Science-
dc.identifier.wosid001125273100004-
dc.identifier.scopusid2-s2.0-85184470488-
dc.citation.endpage501-
dc.citation.number6-
dc.citation.startpage490-
dc.citation.volume23-
dc.identifier.kciidART003020885-
dc.description.isOpenAccessY-
dc.contributor.affiliatedAuthorKwak, Nojun-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordAuthorCNN-
dc.subject.keywordAuthorConstant Processing Time-
dc.subject.keywordAuthorClutter-
dc.subject.keywordAuthorRadar Target Detection-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • Graduate School of Convergence Science & Technology
  • Department of Intelligence and Information
Research Area Feature Selection and Extraction, Object Detection, Object Recognition

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share