Publications

Detailed Information

Angstrom-Confined Electrochemical Synthesis of Sub-Unit-Cell Non-Van Der Waals 2D Metal Oxides

DC Field Value Language
dc.contributor.authorJi, Dali-
dc.contributor.authorLee, Yunah-
dc.contributor.authorNishina, Yuta-
dc.contributor.authorKamiya, Kazuhide-
dc.contributor.authorDaiyan, Rahman-
dc.contributor.authorChu, Dewei-
dc.contributor.authorWen, Xinyue-
dc.contributor.authorYoshimura, Masamichi-
dc.contributor.authorKumar, Priyank-
dc.contributor.authorAndreeva, Daria V.-
dc.contributor.authorNovoselov, Kostya S.-
dc.contributor.authorLee, Gwan-Hyoung-
dc.contributor.authorJoshi, Rakesh-
dc.contributor.authorFoller, Tobias-
dc.date.accessioned2024-05-14T07:38:50Z-
dc.date.available2024-05-14T07:38:50Z-
dc.date.created2023-07-13-
dc.date.created2023-07-13-
dc.date.issued2023-07-
dc.identifier.citationAdvanced Materials, Vol.35 No.30-
dc.identifier.issn0935-9648-
dc.identifier.urihttps://hdl.handle.net/10371/202059-
dc.description.abstractBottom-up electrochemical synthesis of atomically thin materials is desirable yet challenging, especially for non-vanderWaals (non-vdW) materials. Thicknesses below a few nanometers have not been reported yet, posing the question how thin can non-vdW materials be electrochemically synthesized. This is important as materials with (sub-)unit-cell thickness often show remarkably different properties compared to their bulk form or thin films of several nanometers thickness. Here, a straightforward electrochemical method utilizing the angstrom-confinement of laminar reduced graphene oxide (rGO) nanochannels is introduced to obtain a centimeter-scale network of atomically thin (<4.3 & ANGS;) 2D-transition metal oxides (2D-TMO). The angstrom-confinement provides a thickness limitation, forcing sub-unit-cell growth of 2D-TMO with oxygen and metal vacancies. It is showcased that Cr2O3, a material without significant catalytic activity for the oxygen evolution reaction (OER) in bulk form, can be activated as a high-performing catalyst if synthesized in the 2D sub-unit-cell form. This method displays the high activity of sub-unit-cell form while retaining the stability of bulk form, promising to yield unexplored fundamental science and applications. It is shown that while retaining the advantages of bottom-up electrochemical synthesis, like simplicity, high yield, and mild conditions, the thickness of TMO can be limited to sub-unit-cell dimensions.-
dc.language영어-
dc.publisherWILEY-VCH Verlag GmbH & Co. KGaA, Weinheim-
dc.titleAngstrom-Confined Electrochemical Synthesis of Sub-Unit-Cell Non-Van Der Waals 2D Metal Oxides-
dc.typeArticle-
dc.identifier.doi10.1002/adma.202301506-
dc.citation.journaltitleAdvanced Materials-
dc.identifier.wosid001014455000001-
dc.identifier.scopusid2-s2.0-85162065226-
dc.citation.number30-
dc.citation.volume35-
dc.description.isOpenAccessY-
dc.contributor.affiliatedAuthorLee, Gwan-Hyoung-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.subject.keywordPlusRAMAN-SPECTROSCOPIC INVESTIGATIONS-
dc.subject.keywordPlusGRAPHENE OXIDE-
dc.subject.keywordPlusCHROMIUM ELECTRODEPOSITION-
dc.subject.keywordPlusEPITAXIAL-GROWTH-
dc.subject.keywordPlusWATER-
dc.subject.keywordPlusNANOCRYSTALS-
dc.subject.keywordPlusEQUILIBRIUM-
dc.subject.keywordPlusEXFOLIATION-
dc.subject.keywordPlusNANOSHEETS-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordAuthor2D transition metal oxides-
dc.subject.keywordAuthorangstrom-confined electrochemistry-
dc.subject.keywordAuthoratomically thin non-van der Waals materials-
dc.subject.keywordAuthorgraphene oxide-
dc.subject.keywordAuthoroxygen evolution reaction-
Appears in Collections:
Files in This Item:
There are no files associated with this item.

Related Researcher

  • College of Engineering
  • Department of Materials Science & Engineering
Research Area 2D materials, 2차원 물질, Smiconductor process, semiconductor devices, 반도체 공정, 반도체 소자

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share