Publications

Detailed Information

An Attention Module for Convolutional Neural Networks

Cited 9 time in Web of Science Cited 12 time in Scopus
Authors

Zhu, Baozhou; Hofstee, Peter; Lee, Jinho; Al-Ars, Zaid

Issue Date
2021-09
Publisher
Springer Verlag
Citation
Lecture Notes in Computer Science, Vol.12891, pp.167-178
Abstract
Attention mechanism has been regarded as an advanced technique to capture long-range feature interactions and to boost the representation capability for convolutional neural networks. However, we found two ignored problems in current attentional activations-based models: the approximation problem and the insufficient capacity problem of the attention maps. To solve the two problems together, we initially propose an attention module for convolutional neural networks by developing an AW-convolution, where the shape of attention maps matches that of the weights rather than the activations. Our proposed attention module is a complementary method to previous attention-based schemes, such as those that apply the attention mechanism to explore the relationship between channel-wise and spatial features. Experiments on several datasets for image classification and object detection tasks show the effectiveness of our proposed attention module. In particular, our proposed attention module achieves 1.00% Top-1 accuracy improvement on ImageNet classification over a ResNet101 baseline and 0.63 COCO-style Average Precision improvement on the COCO object detection on top of a Faster R-CNN baseline with the backbone of ResNet101-FPN. When integrating with the previous attentional activations-based models, our proposed attention module can further increase their Top-1 accuracy on ImageNet classification by up to 0.57% and COCO-style Average Precision on the COCO object detection by up to 0.45. Code and pre-trained models will be publicly available.
ISSN
0302-9743
URI
https://hdl.handle.net/10371/204627
DOI
https://doi.org/10.1007/978-3-030-86362-3_14
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Engineering
  • Department of Electrical and Computer Engineering
Research Area AI Accelerators, Distributed Deep Learning, Neural Architecture Search

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share