Publications

Detailed Information

Estrogen Effects Differ Between Medium Maintenance and Replacement from Transcriptional and Clinical Perspectives in T47D Breast Cancer Cells

Cited 0 time in Web of Science Cited 0 time in Scopus
Authors

Jang, Seok-Hoon; Paek, Se Hyun; Kim, Jong-Kyu; Seong, Je Kyung; Lim, Woosung

Issue Date
2023-10
Publisher
International Institute of Anticancer Research
Citation
Anticancer Research, Vol.43 No.10, pp.4447-4469
Abstract
BACKGROUND/AIM: Our most recent study revealed that the responsiveness of hormone receptor-positive breast cancer (HR+ BC) cells to estrogen or endocrine therapy can be altered by certain cell culture or ambient environmental conditions. Nevertheless, we were unable to investigate the relevant molecular mechanism and clinical relevance. Therefore, this study was planned as a follow-up. MATERIALS AND METHODS: RNA sequencing was mainly used with T47D cells treated with or without 17β-estradiol (E2) under medium maintenance (MTN; conventional culture method) and medium exchange (EXC; daily replacing the existing medium with fresh medium). RESULTS: The role of E2 in transcription differed between MTN and EXC, and E2 played more important roles in transcription in terms of cancer development under EXC than under MTN, consistent with the previous functional effects of EXC. The novel concept of the "estrogen-responsive and proliferation-related gene (ERPG)" was introduced. The expression of ERPGs, which were distinguished from typical estrogen-responsive genes, was correlated with that of prognostic and predictive factors for HR+ BC. The transcriptional induction of ERPGs and typical estrogen-responsive genes regardless of E2 treatment under MTN was reminiscent of constitutive estrogen receptor (ER) activation. Additionally, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) inhibitors were more effective under EXC than under MTN. CONCLUSION: This study, demonstrating the more important roles of estrogen in terms of cancer development under EXC than under MTN, supports the use of our research model in future studies to overcome endocrine resistance in HR+ BC.
ISSN
0250-7005
URI
https://hdl.handle.net/10371/204971
DOI
https://doi.org/10.21873/anticanres.16640
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Related Researcher

  • College of Veterinary Medicine
  • Department of Veterinary Medicine
Research Area Metabolic syndrome model construction and omics research, Mouse locomotion and metabolic phenotyping analysis, Study of immune regulatory response in obesity, 대사증후군 모델 구축 및 오믹스 연구, 마우스 운동 및 대사 표현형 분석, 비만에서의 면역 조절 반응 연구

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share